Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licenseCC-BY-NC-
dc.creatorDiego Ortiz, Sandra-
dc.date.accessioned2024-02-17T03:09:26Z-
dc.date.available2024-02-17T03:09:26Z-
dc.date.created2023-
dc.date.issued2024-02-16-
dc.identifier.citationDiego, S. (2023). Triángulo de Sierpinski, perímetro. [Presentación multimedia] Universidad Nacional Autónoma de México. Escuela Nacional Preparatoria Plantel 6 "Antonio Caso". http://repositorio.cab.unam.mx-
dc.identifier.urihttps://repositorio.cab.unam.mx/handle/123456789/123-
dc.description.sponsorshipINFOCAB PB402623en_US
dc.description.tableofcontentsObjetivo, Inroducción, Definición, Construcción del Triángulo de Sierpinski, Perímetro del Triángulo de Sierpinski, Autoevaluación del tema, Referencias, Aviso legal-
dc.formatPowerPoint-
dc.languagespaen_US
dc.publisherUniversidad Nacional Autónoma de México. Escuela Nacional Preparatoria Plantel 6 "Antonio Caso"en_US
dc.rightsLa titularidad de los derechos patrimoniales de esta obra pertenece a la Universidad Nacional Autónoma de México. Su uso se rige por una licencia Creative Commons BY-NC 4.0 Internacional, https://creativecommons.org/licenses/by-nc/4.0/legalcode.es, fecha de asignación de la licencia 2023, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico cab@repositorio.unam.mxen_US
dc.subject1.12 Diseño geométrico de un fractal (Triángulo de Sierpinski)en_US
dc.titleTriángulo de Sierpinski, perímetroen_US
dc.typePresentación multimediaen_US
dcterms.accessRightsAcceso abiertoen_US
dcterms.audienceAlumnadoen_US
dcterms.educationLevelBachilleratoen_US
dcterms.modified2024-03-19-
dc.rights.holderUniversidad Nacional Autónoma de México-
dc.subject.keywordTriángulo de Sierpinski, Perímetro, Fractal, Fractales-
educational.context.modePresencialen_US
educational.intentedEndUserDegreeSEXTO GRADO (ENP)en_US
dc.subject.courseÁrea 4: Matemáticas VIen_US
dc.subject.courseUnitUnidad 1. Matemáticas en el arteen_US
educational.interactivitytypeEl recurso permite la manipulación directa de variables o parámetrosen_US
educational.descriptionQue el alumnado conozca a través del uso del recurso la definición de fractal, construya un Triángulo de Sierpinski y conozca su perímetro.en_US
dc.relation.referencesAzul, Rocío (2023). Triángulo de Siperpinski, su área y perímetro. https://www.youtube.com/watch?v=p74cgMMBwR0&t=531s   CAB (2023). CAB, Repositorio Universitario de Recursos Educativos Digitales del Consejo Académico del Bachillerato (RU-CAB). https://www.cab.unam.mx/   ENP, UNAM (2023). Programa Matemáticas VI área IV. http://enp.unam.mx/assets/pdf/planesdeestudio/6to/1620%20Matematicas%20VI%20Area%20IV.pdf   Gutiérrez Figueroa X., Parraguez González M. (2021). Mecanismo mental de síntesis en el aprendizaje del triángulo de Sierpinski como totalidad.   Mandelbrot B. (1983). La Geometría Fractal de la Naturaleza.   Martínez Requena C. A. (2015). Objetos Fractales y Arquitectura.   Morales Ortiz, J. A. (2023). Tesis: Ingeniería Arquitectónica y Diseños Fractales.   PIXNIO (2023). Romanesco, bróculi. https://pixnio.com/es/plantas/vegetales/romanesco-broculi   PH (2023). Diente de León. https://pxhere.com/es/photo/777864   PublicDomainPictures (2023). Uvas fractales. https://www.publicdomainpictures.net/es/view-image.php?image=124692&picture=uvas-fractales   PublicDomainPictures (2023). Fractales en espiral. https://www.publicdomainpictures.net/es/view-image.php?image=248872&picture=fractales-en-espiral   PublicDomainPictures (2023). Bosque 6 del fractal. https://www.publicdomainpictures.net/es/view-image.php?image=165896&picture=bosque-6-del-fractal   Sastre, María Asunción (). Geometría Fractal. https://underpost.net/ir/pdf/artificial/Geometria%20Fractal.pdf   Wikimedia Commons (2023). Mandel zoom 00 mandelbrot set.jpg. https://commons.wikimedia.org/wiki/File:Mandel_zoom_00_mandelbrot_set.jpg   Wikimedia Commons (2023). https://upload.wikimedia.org/wikipedia/commons/7/74/Animated_construction_of_Sierpinski_Triangle.gif   Wikimedia Commons (2023). https://upload.wikimedia.org/wikipedia/commons/7/72/Romanescu.JPGen_US
dc.date.dateaccepted2024-01-31-
educational.contextEscuela Nacional Preparatoria (ENP)en_US
educational.learningResourceTypePresentación multimediaen_US
classification.taxonI Ciencias Físico-Matemáticas y de las Ingenierías (ENP)en_US
educational.usabilityLevelFácilen_US
Aparece en las colecciones: Escuela Nacional Preparatoria



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.