ESCUELA NACIONAL COLEGIO DE CIENCIAS Y HUMANIDADES, PLANTEL AZCAPOTZALCO

PROYECTO INFOCAB No. PB201516

CUADERNILLO DE

Introducción a la Nomenclatura Inorgánica

Coordinadora:

Noemí Jiménez Martínez

Integrantes:

Edith Elidé Romero Esquiliano

Evelia Morales Domínguez

María del Consuelo Hernández Sánchez

ÍNDICE

	Página
Introducción	
Presentación	
Capítulo 1. Conocimientos previos	1
Capítulo 2. Introducción a la nomenclatura de compuestos inorgánicos	6
Capítulo 3. Clasificación de compuestos inorgánicos y desarrollo de habilidades	11
Capítulo 4. Hidruros	18
Capítulo 5. Óxidos metálicos	28
Capítulo 6. Hidróxidos	39
Capítulo 7. Anhídridos	47
Capítulo 8. Oxiácidos	55
Capítulo 9. Hidrácidos	74
Capítulo 10. Sales	82
Relación de anexos	
Anexo 1. Tabla periódica de los elementos químicos.	101
Anexo 2. Tabla de cationes y aniones.	102
Anexo 3 . Tabla periódica con estados de oxidación de los elementos químicos.	105
Bibliografía	106

Aviso legal

D.R.© 2018. Universidad Nacional Autónoma de México. Excepto donde se indique lo contrario, este contenido digital está bajo una licencia Creative Commons Atribución-No comercial (CC BY-NC) 4.0 Internacional https://creativecommons.org/licenses/by-nc/4.0/legalcode.es

Forma sugerida de citar la obra:

Jiménez, N., Romero, E., Morales, E. y Hernández, M. (2018). *Introducción a la Nomenclatura Inorgánica*. Universidad Nacional Autónoma de México. Escuela Nacional Colegio de Ciencias y Humanidades Plantel Azcapotzalco. https://repositorio.cab.unam.mx

Con la licencia @ CC BY-NC 4.0 usted es libre de

- Compartir: copiar y redistribuir el material en cualquier medio o formato
- Adaptar: remezclar, transformar y construir a partir del material

Bajo los siguientes términos:

- Atribución: usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante
- No comercial: usted no puede hacer uso del material con propósitos comerciales.

En los casos que sea usada la presente obra, deben respetarse los términos especificados en esta licencia.

Introducción

Entre los temas de Química que representan mayor dificultad de aprendizaje para los estudiantes de Colegio de Ciencias y Humanidades (CCH) se encuentra el de nomenclatura de los compuestos inorgánicos, esta dificultad ha sido detectada tanto en los cursos regulares como a través de las estadísticas del Programa Institucional de Asesorías (PIA). Esta situación origina un problema mayor, ya que la comprensión de la nomenclatura química es básica y fundamental para el desarrollo de otros temas, como: escritura y comprensión de ecuaciones químicas, y cálculos estequiométricos; lo que finalmente si no se atiende repercute en un elevado índice de reprobación de las asignaturas de Química.

Por otro lado, es importante que los estudiantes de bachillerato conozcan, como parte de su cultura básica, que las ciencias tienen lenguajes específicos y que nombrar a las sustancias químicas ha sido parte del desarrollo y evolución de un lenguaje propio de la química.

En este cuadernillo se propone una forma de aprender la nomenclatura química de los compuestos inorgánicos en un nivel básico, pero suficiente para iniciar un estudio más especializado en niveles educativos posteriores al bachillerato. Actualmente la IUPAC (International Union of Pure and Applied Chemistry) reconoce varios sistemas de nomenclatura por lo que existen diferentes formas "aceptables" de nombrar a un mismo compuesto; no obstante que el propósito de este organismo es la estandarización de los nombres, lo que implica: un solo nombre para cada compuesto; sin embargo, la consolidación de este objetivo implica modificar de raíz tradiciones culturales y científicas que ha perdurado a través del tiempo. En este material se utiliza la nomenclatura Stock y Tradicional, aceptadas por la IUPAC, debido a que en los laboratorios del CCH y en otras escuelas de la UNAM, de nivel medio y superior, el uso de estos sistemas continua vigente.

En cada sección de este cuadernillo, se procura el uso de la observación y el razonamiento para la comprensión de la nomenclatura de los diferentes tipos de compuestos químicos inorgánicos.

A través del cuadernillo y con base en la experiencia docente de las autoras, dentro del Modelo Educativo del CCH, se propone un estilo creativo que atiende las dudas más recurrentes de los estudiantes en cuanto a nomenclatura inorgánica; además que través de los diversos ejercicios se promueve el desarrollo de habilidades básicas.

Presentación

El cuadernillo que a continuación se presenta es una introducción a la nomenclatura inorgánica de los principales compuestos inorgánicos que se estudian en los cursos de química I, II y III pertenecientes al programa de estudios de la Escuela Nacional Colegio de Ciencias y Humanidades.

Este cuadernillo fue elaborado para apoyar el aprendizaje autónomo y el aprender a aprender de los alumnos en uno de los temas de alta dificultad, así mismo, este material puede ser una herramienta de apoyo para la labor docente. Puede utilizarse en cursos ordinarios, de recursamiento, último esfuerzo y sabatino, así también en la preparación de exámenes extraordinarios.

Con base en la experiencia docente de las autoras, el cuadernillo está organizado en una serie de capítulos. El primer capítulo atiende a los conceptos previos de elemento, compuesto, átomo, molécula, ion y número de oxidación, los cuales se consideran esenciales para la construcción de nuevos conocimientos, como es la nomenclatura. En el segundo capítulo, se hace una introducción a los dos sistemas de nomenclatura que se utilizaran para nombrar a los compuestos inorgánicos, Nomenclatura Stock y Tradicional. El tercer capítulo consiste en la clasificación de los compuestos en orgánicos e inorgánicos a través del desarrollo de habilidades del alumno como la observación, comparación, clasificación, entre otras, que coadyuven en la compresión del tema de nomenclatura.

En los capítulos del cuarto al décimo se desarrolla de manera clara y con un lenguaje asequible para el alumno, la nomenclatura de los hidruros, óxidos metálicos, hidróxidos, anhídridos, oxiácidos, hidrácidos, sales binarias y terciarias. En cada capítulo, se describe en forma sencilla, cómo escribir la fórmula a partir del nombre químico del compuesto y viceversa. Al final de cada capítulo, el estudiante puede hacer un reconocimiento de su aprendizaje a través de la autoevaluación.

En los anexos 1, 2 y 3 se proporciona una tabla periódica de los elementos químicos, tabla de cationes y aniones más utilizados en nomenclatura, y una tabla periódica con los estados de oxidación de los elementos químicos, respectivamente.

Finalmente, las autoras creemos que este cuadernillo a través de instrucciones sencillas y de un lenguaje adecuado para el alumno facilitará el entendimiento del tema de nomenclatura química inorgánica.

Capítulo 1.

Conocimientos previos.

La nomenclatura inorgánica es un conjunto de reglas sistemáticas que se utilizan para nombrar a los compuestos inorgánico, su estudio hace referencia a una variedad de conceptos que los estudiantes requieren conocer para una mejor compresión de la misma. En este capítulo, se revisan conceptos que consideramos básicos para iniciar el aprendizaje de la nomenclatura.

¿Qué es un elemento?

Un elemento es una sustancia pura que no se puede descomponer en sustancias más simples por medios físicos o químicos. Los elementos químicos se encuentran organizados en la tabla periódica y en ésta hay dos grandes grupos: metales y no metales (ver tabla periódica en anexo 1).

Los elementos químicos se representan por símbolos los cuales consisten en una letra (en mayúscula) o dos letras (la primera mayúscula y la segunda minúscula); los símbolos están relacionados con el nombre de su descubridor o bien a partir de sus nombres en latín, griego, alemán, inglés o francés.

La mayoría de los elementos químicos son **metales**; algunos ejemplos de éstos son: aluminio (**AI**), cobre (**Cu**), magnesio (**Mg**), plata (**Ag**), níquel (**Ni**), etc.

En menor cantidad se encuentran los **no metales**, entre ellos se encuentran: carbono (**C**), nitrógeno (**N**), oxígeno (**O**), cloro (**CI**), etc.

Otros elementos que comparten cualidades de metales y no metales se conocen como **metaloides**, ejemplos son: germanio (Ge), arsénico (As), antimonio (Sb) y telurio (Te).

¿Qué es un compuesto?

Los compuestos son las sustancias químicas que se originan por la combinación de dos a más elementos diferentes que se unen químicamente, a diferencia de los elementos, éstos se pueden descomponer en sustancias más simples por medios químicos.

Los compuestos se representan a través de fórmulas químicas que indican cuáles

elementos se han unido y, de acuerdo con el número de elementos que contienen, se clasifican en compuestos binarios, ternarios y cuaternarios.

Los **compuestos binarios** están formados por dos elementos diferentes y en este grupo se encuentran los óxidos metálicos, óxidos no metálicos, los hidruros, los hidrácidos y las sales binarias; algunos ejemplos de este tipo de compuestos son:

NaCl AlH₃ H₂O

Las fórmulas anteriores corresponden a **compuestos binarios** porque cada una tiene sólo **dos** elementos químicos; el primero compuesto estaría formado por **sodio** y **cloro**, el segundo por **aluminio** e **hidrógeno**, mientras que el tercero está formado por **hidrógeno** y **oxígeno**.

Los **compuestos ternarios** están formados por tres elementos diferentes y en este grupo se incluyen los hidróxidos (bases), oxácidos y las oxisales, por ejemplo:

Fe $(OH)_3$ H_2CO_3

Estas fórmulas representan **compuestos ternarios** porque están formadas por **tres** elementos químicos; así, el primero está formado por **hierro**, **oxígeno** e **hidrógeno**, mientras que el segundo está formado por **hidrógeno**, **carbono** y **oxígeno**.

Los **compuestos cuaternarios** están formados por **cuatro** elementos diferentes y en este grupo se incluyen las sales ácidas y básicas, entre otros; ejemplos de estos compuestos son:

NaHCO₃ Pt (OH)NO₃

Estos **compuestos son cuaternarios** porque están formados por **cuatro** elementos: el primero tiene **sodio**, **hidrógeno**, **carbono** y **oxígeno**, mientras que el segundo está formado por **platino**, **oxígeno**, **hidrógeno** y **nitrógeno**.

¿Qué es un átomo?

Es la unidad más pequeña de un elemento químico y está formado por tres partículas: electrones, protones y neutrones. El átomo es neutro porque el número de protones (situados en el núcleo) con carga positiva (1+) y de electrones (situados en los orbitales) con carga negativa (1-) es el mismo. La forma más sencilla de representar el átomo es a través de esferas (ver tabla 1).

Tabla 1. Representación nanoscópica y simbólica del átomo.

Representación nanoscópica	Representación Simbólica	Interpretación
N	1 Na	1 átomo de sodio
K	3 K	3 átomos de potasio

¿Qué es una molécula?

Una molécula es un agregado de átomos que contiene al menos dos átomos, los cuales pueden ser iguales o diferentes, éstos que se mantienen unidos por fuerzas o enlaces químicos.

Las moléculas pueden ser diatómicas o poliatómicas, las diatómicas están formadas por dos átomos y las poliatómicas por tres o más átomos. En la tabla 2 se muestran ejemplos de este tipo de moléculas.

Tabla 2. Representación nanoscópica y simbólica de moléculas.

Representación nanoscópica	Representación simbólica	Interpretación
N N	N ₂	Una molécula diatómica del elemento nitrógeno.
000	O ₃	Una molécula poliatómica del elemento oxígeno (de la sustancia llamada ozono).
HOH	H ₂ O	Una molécula poliatómica del compuesto agua.

¿Qué es un ion?

Un ion se forma cuando un átomo o conjunto de átomos han adquirido una carga eléctrica, positiva o negativa, por la pérdida o ganancia de electrones. Los iones se representan con los símbolos (o fórmula) químicos y su **carga** con un **superíndice numérico** del lado derecho del símbolo (o de la fórmula); este número debe indicar el signo (positivo o negativo) y magnitud de la carga.

Respecto al número de átomos los iones se clasifican en monoatómicos (de un solo átomo) y en poliatómicos (de dos o más átomos enlazados químicamente):

Con respecto a su carga, los iones se clasifican en cationes y aniones (anexo 2):

Un catión se forma cuando un átomo (o conjunto de átomos) ha perdido uno o más electrones adquiriendo carga positiva y, la magnitud de su carga será igual al número de electrones perdidos. **Un anión** se forma cuando un átomo (o conjunto de átomos) ha ganado uno o más electrones adquiriendo carga negativa y, la magnitud de su carga será igual al número de electrones ganados.

En seguida se muestran ejemplos de la clasificación de algunos iones de acuerdo con su carga:

¿Qué es el número de oxidación?

El número de oxidación se refiere a la carga parcial o neta que adquiere cada uno de los átomos que forman la unidad fórmula de un compuesto, lo que significa que al combinarse químicamente los átomos pierden o ganan electrones, o bien, los comparten de manera desigual con otros átomos.

Los compuestos químicos son neutros por lo que la suma de los números de oxidación de todos sus átomos debe ser cero; por otro lado, en los iones la suma de los números de oxidación de todos sus átomos debe ser igual a la carga del ion.

Para calcular el número de oxidación que tienen los átomos de los elementos en un compuesto existen algunas reglas básicas, enseguida se mencionan algunas:

- Los átomos de los elementos libres tienen número de oxidación cero.
- ❖ El hidrógeno tiene número de oxidación 1+, excepto en hidruros (1-).
- ❖ El oxígeno tiene número de oxidación 2-, excepto en peróxidos (1-).
- ❖ Los metales siempre tienen números de oxidación positivos, por lo que, siempre forman cationes.
- ❖ Los números de oxidación de los no metales depende de los elementos con los que se combinan y, pueden ser positivos o negativos. En compuestos binarios, los no metales forman aniones, excepto en los óxidos.

En el **anexo 3** encontrarás los números de oxidación que adquieren los elementos cuando forman compuestos.

Algo muy importante que debes tener en cuenta, es que en los iones monoatómicos la carga eléctrica coincide con su número de oxidación o con alguno de éstos; por ejemplo:

$$Na^{1+}$$
 Ca^{2+} O^{2-} Fe^{2+}

Por otro lado, en los iones poliatómicos la carga es igual a la suma de los números de oxidación de todos sus átomos; por ejemplo, en el anión sulfito $(SO_3)^{2-}$, azufre, **S**, tiene número de oxidación **4+** y, cada átomo de oxígeno, **O**, de **2-**, los números se suman tomando en cuenta todos los átomos: (4+) + 3(2-) = 2-, lo que corresponde a la carga de este anión:

Capítulo 2.

Introducción a la nomenclatura de compuestos inorgánicos.

La comprensión y dominio de nomenclatura de las sustancias implica conocer cómo se escribe la fórmula de un compuesto a partir de su nombre y cómo asignarle el nombre a partir de su fórmula. En las siguientes secciones se describen y ejemplifican sistemas de nomenclatura aceptadas en el ámbito científico, las cuales son comúnmente utilizadas en las asignaturas de Química del Colegio.

¿Qué es la nomenclatura?

La nomenclatura química es un conjunto de reglas que se utilizan para nombrar a los elementos y compuestos químicos. Actualmente, la IUPAC (por sus siglas en inglés), es el organismo encargado de establecer las reglas correspondientes para nombrar a los compuestos químicos; la IUPAC reconoce tres sistemas de nomenclatura para los compuestos inorgánicos: Sistemática, Tradicional y Stock.

En este cuadernillo se describen, en forma general, cómo construir la fórmula de un compuesto inorgánico y en qué consisten los sistemas de Nomenclatura Stock y Tradicional. Para nombrar a óxidos metálicos, hidróxidos, hidruros y sales se utiliza la nomenclatura Stock y; para anhídridos y ácidos se utiliza la nomenclatura Tradicional.

¿Cómo se escriben las fórmulas de los compuestos inorgánicos?

Para escribir las fórmulas de los compuestos inorgánicos se deben cumplir las siguientes reglas generales:

Regla 1. Los compuestos inorgánicos están formados, generalmente, por iones, y por convención se ha establecido que en las fórmulas se escriba primero la parte positiva seguida de la parte negativa, catión seguido del anión.

Regla 2. Los compuestos inorgánicos no tienen carga eléctrica, esto es, son neutros, lo que significa que la suma de las cargas, positivas y negativas, de todos los iones que forman al compuesto debe ser igual a cero. La carga global positiva en la fórmula se determina multiplicando el valor de la carga por el número de veces que aparece el ion

positivo; de la misma forma se determina la carga global negativa.

Regla 3. Los subíndices numéricos de las fórmulas representan el número átomos o iones que forman al compuesto y por convención el subíndice **1** no se escribe.

En seguida se muestra la aplicación de estas reglas en la escritura de fórmulas.

Ejemplo 1. Escribir la fórmula de cloruro de potasio.

Paso 1. Se escribe la parte positiva seguida de la parte negativa, el catión seguido del anión con sus cargas eléctricas correspondientes (**regla 1**) Consultar el anexo 3.

Paso 2. Se observa que hay la misma cantidad de cargas positivas (+1) y negativas (-1), por lo que la unión de estos iones forma un compuesto neutro y su fórmula química simplemente es la unión de los símbolos (**regla 2**).

Paso 3. Se observa que se requiere un ion potasio para neutralizar un ion cloruro por lo que el subíndice numérico en los símbolos es 1 pero de acuerdo con la **regla 3**, éste no se escribe.

Ejemplo 2. Escribir la fórmula del hidróxido de hierro (II).

Paso 1. Se escribe la parte positiva seguida de la parte negativa con sus cargas correspondientes (**regla 1**). En este caso, el catión es el hierro, es un ion monoatómico y el número romano (II) indica la carga que corresponde a uno de sus estados de oxidación que es **2+**; mientras que el anión es el hidróxido, es un ion poliatómico con carga **1-** (ver el **anexo 2**).

Paso 2. En este caso, la cantidad de cargas eléctricas de los iones es diferente; por lo que para neutralizar la carga de un catión de hierro se requieren de **dos** iones hidróxido:

Cuando en la fórmula se requieren dos o más iones poliatómicos iguales, éstos se agrupan dentro de un paréntesis y la cantidad de iones se representa en la fórmula como **subíndice numérico**.

Los subíndices representan el número de veces que los iones deben estar presentes en una fórmula para que la cantidad de cargas positivas y negativas sea la misma (regla 2).

Ejemplo 3. Escribir la fórmula de fosfato de amonio.

Paso 1. Escribir la parte positiva seguida de la parte negativa con sus simbologías correspondientes (regla 1), (consultar tabla de iones en anexo 2).

$$(NH_4)^{1+} (PO_4)^{3-}$$

Paso 2. Al Igual que en el caso anterior, la cantidad de cargas positivas y negativas es desigual, por lo tanto, para neutralizar las cargas se requieren de **tres** iones amonio y **un** ion fosfato como se muestra a continuación:

Paso 3. En esta fórmula se requieren más de dos cationes poliatómicos, así que éstos se agrupan dentro de un paréntesis y la cantidad de iones se indica con el **subíndice**, en este caso, son **tres** cationes amonio y un sólo un anión fosfato, el subíndice **uno** no se escribe (**regla 3**).

¿Cómo se nombran los compuestos inorgánicos a partir de su fórmula?

A continuación, se describe la nomenclatura Stock que se utiliza en este cuadernillo para nombrar a los óxidos metálicos, hidróxidos, hidruros y sales.

Para asignar el nombre a un compuesto a partir de su fórmula se debe considerar lo siguiente:

- 1. La fórmula se separa, en la parte positiva y la negativa que permite saber cuáles son los iones implicados.
- 2. La fórmula se lee de derecha a izquierda, esto es, se nombra primero el anión seguido del catión uniendo sus nombres con la **preposición** "de".
- 3. Cuando el catión es un metal que tiene dos o más números de oxidación, se debe indicar con cuál de sus números se está combinando en el compuesto y se indica al final del nombre utilizando números romanos entre paréntesis. Si el catión sólo tiene un número de oxidación, éste no se indica en el nombre en el nombre (consulta los números de oxidación en el **anexo 3**).

A continuación, se muestran algunos ejemplos de cómo nombrar a un compuesto inorgánico a partir de su fórmula.

Ejemplo 1. Nombrar el compuesto Ba (OH)2

En esta fórmula, la parte positiva es el ion bario y la parte negativa es el ion hidróxido, y el subíndice **2** en el hidróxido significa que existen dos iones hidróxido:

Para nombrar al compuesto a partir de su fórmula, se lee primero el anión y luego el catión.

El nombre del compuesto es: hidróxido de bario

¡Recuerda! cuando el catión metálico posee un solo número de oxidación, éste no aparece en su nombre.

Ejemplo 2. Nombrar el compuesto Fe₂O₃

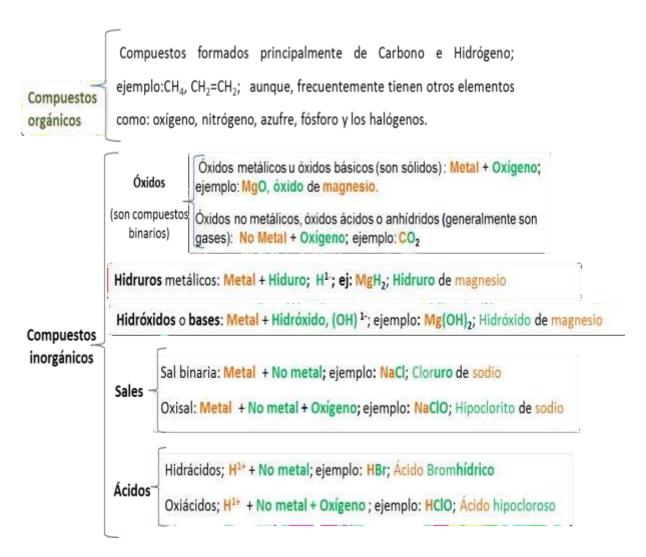
En esta fórmula, la parte positiva es el catión hierro y la parte negativa es el ion óxido. El subíndice **2** que aparece en la fórmula indica que hay dos iones hierro y el subíndice **3** indica que hay tres iones óxido como se muestra a continuación:

Para leer el nombre del compuesto a partir de su fórmula se lee primero el anión y luego el catión.

Así, el nombre de este compuesto es óxido de hierro (III). El número romano III está indicando el número de oxidación **3+** del ion hierro.

¡Recuerda! si el catión metálico tiene más de un número de oxidación, en el nombre del compuesto se indica utilizando números romanos entre paréntesis.

Capítulo 3.


Clasificación de compuestos inorgánicos y desarrollo de habilidades.

En este capítulo se promueve el desarrollo y la práctica de habilidades como: analizar, seleccionar, reconocer, diferenciar y describir, entre otras, a través del estudio de la clasificación de los compuestos químicos. La observación es una de las acciones básicas para el desarrollo de las otras habilidades. Una persona desarrolla habilidades que, junto con la observación, se conjugan y coadyuvan a mejorar su aprendizaje; así, el ser humano quien por naturaleza es observador tiene que situarse de manera continua en actividades que le favorezcan el desarrollo de habilidades.

Para iniciar el estudio de los compuestos inorgánicos es necesario tener en cuenta la relación que hay entre algunos conceptos básicos; así, es necesario tener claro que el concepto de sustancia incluye tanto a los elementos como a los compuestos, y que el de mezcla se refiere al conjunto de estas sustancias con interacciones superficiales entre sí sin la modificación de sus propiedades. Los elementos son las sustancias más simples que se conocen y comúnmente se encuentran unidos químicamente formando compuestos: todas las cosas materiales están constituidas tanto de sustancias como de mezclas. A nivel nanoscópico, un elemento está formado por átomos neutros de un mismo tipo; mientras que un compuesto está formado por átomos de diferentes elementos que se enlazan químicamente, formando moléculas o unidades fórmula (agrupación de iones). Tanto las sustancias como los cambios químicos se pueden representar a través de un símbolo, una fórmula o una ecuación.

Para facilitar el estudio de los materiales (sustancias y mezclas) que nos rodean, los científicos observan y clasifican con base en diferentes criterios, como las propiedades físicas o químicas. En este capítulo, con el fin de iniciar el estudio simbólico de las sustancias, se propone la clasificación de los compuestos inorgánicos con base en su composición, lo cual se refleja en sus fórmulas.

El siguiente cuadro sinóptico muestra una clasificación general de los compuestos químicos de acuerdo con sus fórmulas (composición).

La mayoría de los elementos de la tabla periódica forman parte de la composición de los compuestos inorgánicos y sólo unos cuantos de éstos forman a los compuestos orgánicos. En general, una fórmula representa a un compuesto neutro; las fórmulas de compuestos inorgánicos se pueden descomponer en una parte positiva o catión que se escribe al inicio de las fórmulas y, una parte negativa o anión que se escribe al final de estas, dando origen a una fórmula neutra (ver capítulo 2).

CATIÓN ANIÓN fórmula neutra

Habilidades que practicar: observación, análisis, descripción, identificación y clasificación, entre otras.

Ejercicios.

1. Analiza la información del cuadro sinóptico y contesta las siguientes preguntas:
a. ¿En qué criterio se basa esta clasificación de los compuestos químicos?
b. ¿Qué distingue a los compuestos orgánicos de los inorgánicos?
c. ¿Qué diferencia hay entre las fórmulas de los ácidos y las sales?
d. ¿Qué semejanzas y diferencias hay entre las fórmulas de los óxidos básicos y los óxidos ácidos?
e. ¿Cómo se detecta que una fórmula corresponde a una base?
f. ¿Qué diferencias hay entre las fórmulas de los hidruros y los hidrácidos?
g. ¿Óxido ácido y oxiácido, se refieren al mismo tipo de compuestos?
h. ¿Qué otro nombre recibe los óxidos ácidos?
i. ¿Qué distingue a las fórmulas de los ácidos de las de otros compuestos?

2. Escribe óxido ácido u oxiácido a las s	siguientes fórmulas según corresponda.
a) H ₃ PO ₃	e) SO ₂
b) N ₂ O ₃	f) HBrO ₄
c) CO ₂	g) H ₂ SO ₃
d) H ₂ CO ₃	h) P ₂ O ₅
3. Escribe orgánico o inorgánico, de aclas siguientes fórmulas.	uerdo con el tipo de compuesto que corresponden
a) Ba (OH) ₂	e) HF
b) CaBr ₂	f) CH ₃ CO ₂ H
c) CH ₃ CH ₂ OH	g) C ₈ H ₁₈
d) Cl ₂ O ₇	h) C ₆ H ₁₂ O ₆
4. Distingue los hidróxidos (o bases) de	los óxidos básicos en las siguientes fórmulas.
a) MgO	e) Li ₂ O
b) LiOH	f) CuO
c) Ca (OH)2	g) Mg (OH) ₂
d) CaO	h) ZnO
 5. Señala la fórmula que corresponde a a) KCI b) NaOH c) H₃PO₃ d) Mg (BrO₃)₂ 	una oxisal:

6. Selecciona y encierra con color verde las fórmulas que representen a los hidróxidos o bases y de color anaranjado los óxidos básicos.

$$Mg(OH)_{2}$$
 $P_{2}O_{5}$
 CO_{2}
 $Mg(OH)_{2}$
 CaO
 Mc/O
 CaO
 CaO
 MgO
 $K_{2}Cr_{2}O_{7}$
 MgO
 Co_{2}
 MgO
 Co_{2}
 MgO
 Co_{2}
 MgO

7. Selecciona y encierra con color rojo las fórmulas que representen a los ácidos y con azul a las bases.

$$Na_2SO_4$$
 $Hg(OH)_2$ CO_2 Hgr_O_4 Hgr_O_5 Hgr_O Hgr_O

HCI ZnS H₂Te NO MnO_2 AgNO₃ FeCl₃ Li₂CO₃ **HCIO** SnO₂ CdSO₃ AlH₃ MgI_2 BaCrO₄ HMnO₄ $Mn(OH)_2$ N_2O_5 PtH₄ CuCl₂ Fe₂O₃ NO_2 Sn (NO₃)₂ Sr (SO₄)₂ FeO KΗ Ca (OH)₂ PbO HgO HNO₂ HF SO₃ NiH₃ H₂CrO₄ ZnBr₂ H_3PO_3 **HBrO** Ti₂O₃ Cd(OH)₂

8. Escribe a qué tipo de compuesto inorgánico corresponden las siguientes fórmulas: óxido metálico (óxido básico), óxido no metálico (óxido ácido), hidróxido, ácido (hidrácido

u oxiácido), hidruro, sal (binaria u oxisal).

Autoevaluación.

I. Une con líneas de colores las fórmulas con el tipo de compuesto al que corresponde.

Fórmula del compuesto	Tipo de compuesto
Ta ₂ O ₅	HIDRÓXIDO
H_3PO_4	HIDNOXIDO
SO ₃	SAL BINARIA
Cu(OH) ₂	ÓXIDO ÁCIDO
$Ca_3(PO_4)_2$	ONIDO ACIDO
CaCl ₂	HIDRURO
Ge(OH)₄	HIDRÁCIDO
PtO ₂	
MgH_2	OXISAL
KMnO ₄	ÓXIDO BÁSICO
H ₂ S	,
GaH ₃	OXIÁCIDO

II. Subraya la respuesta correcta

- 1. Un ejemplo de anhídrido (óxido ácido) es:
- a) Ni (OH)₂
- b) MgO
- c) CO₂
- d) HCIO₃
- 2. Fórmula que representa a un compuesto orgánico:
- a) H₂CO₃
- b) Mg (OH)₂
- c) KNO₃
- d) $C_3H_6O_2$
- 3. Señala la opción que representa únicamente ácidos:
- a) SO₃
- b) HCI, HgOH
- c) HNO₃, LiNO₂
- d) HF, HBr
- 4. Señala la opción que tiene sólo fórmulas de hidruros:
- a) H₂S, HF
- b) NaCl, CaCl₂
- c) LiH, MgH₂
- d) KOH, LiOH

Capítulo 4.

Hidruros.

Introducción.

El hidrógeno reacciona con los metales para formar compuestos binarios llamados **hidruros**; éstos son compuestos iónicos muy inestables que generalmente reaccionan con agua y son muy utilizados en las síntesis orgánicas.

Los hidruros metálicos son compuestos sólidos de alto punto de fusión característica de los compuestos iónicos, algunos ejemplos son: el hidruro de litio (LiH) y el hidruro de sodio (NaH). Cabe mencionar que el hidrógeno forma otros hidruros con no metales como el NH₃ (amoniaco), e hidruros con metaloides como el BH₃ (borano); sin embargo, en este capítulo solo se estudia la nomenclatura de los hidruros metálicos.

El uso de los hidruros no es muy común en la vida cotidiana, pero si en la industria, donde se utilizan como almacenadores y generadores de hidrógeno, un ejemplo es el hidruro de calcio (CaH₂) que se utiliza para obtener el hidrógeno que su vez se utiliza como combustible.

Nomenclatura.

Para construir fórmulas y nombrar a los hidruros metálicos se aplicará la **Nomenclatura Stock** revisada en el capítulo 2.

A. Escribir la fórmula de un hidruro a partir de su nombre.

Para escribir la fórmula del compuesto se siguen los pasos revisados en el capítulo 2, así, primero se escribe la parte positiva (catión) y luego la negativa (anión):

Catión metálico (M⁺) + hidruro (H¹⁻)

En este caso, el catión corresponde a un **metal** y la carga de éste será alguno de sus números de oxidación; por otro lado, la parte negativa o anión **siempre** será el hidruro, que corresponde al hidrógeno con carga (1-).

A continuación, se presentan algunos ejemplos para construir fórmulas de hidruros: **Ejemplo 1.** Escribir la fórmula del **hidruro de magnesio**.

a) Escribir primero la parte positiva que corresponde al metal con su número de oxidación expresado como carga, seguido de la parte negativa que es el hidruro:

$$Mg^{2+}H^{1-}$$

b) Igualar las cargas positivas y negativas para obtener la fórmula neutra del compuesto, en este caso, la carga **2+** del magnesio se iguala con dos iones hidruro con carga **1-**:

Ejemplo 2. Escribir la fórmula del hidruro de níquel (III).

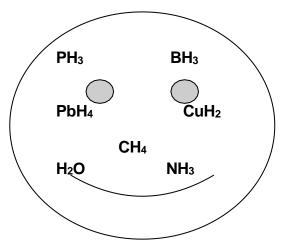
a) Escribir el catión metálico con su carga, la cual coincide con su número de oxidación y corresponde al número romano entre paréntesis (ver capítulo 2), seguido del anión hidruro:

b) El segundo paso es igualar las cargas positivas y negativas para obtener la fórmula neutra, en este caso, la carga **3+** del níquel se iguala con tres iones hidruro con carga **1-**:

Ejercicios.

1. Escribe las fórmulas de los hidruros con los cationes y aniones que se indican:

Catión	Anión	Fórmula
AI 3+	H ¹⁻	Ejemplo: AlH ₃
Ca ²⁺	H ¹⁻	
Pb ²⁺	H ¹⁻	
Cu ²⁺	H ¹⁻	


Catión	Anión	Fórmula
Sn ²⁺	H ¹⁻	
Fe ²⁺	H ¹⁻	
Pb ⁴⁺	H ¹⁻	
Fe ³⁺	H ¹⁻	

- 2. Escribe una fórmula general para los hidruros metálicos:
- 3. Para cada una de las siguientes fórmulas escribe el catión y anión:

Fórmula	Catión	Anión
Ejemplo: InH ₃	In ³⁺	H ¹⁻
SnH ₄		
NaH		
BeH ₂		
PbH ₄		
CoH₃		

Fórmula	Catión	Anión
SnH₂		
PtH ₄		
MgH ₂		
LiH		
AlH ₃		
CuH		

4. Encierra en círculos de color las fórmulas de hidruros metálicos:

5. ¿Cuántos números de oxidación tiene el elemento y cuáles hidruros forma?

Elemento	Número(s) de	Hidruros que
	oxidación	forma
Ejemplo:	21 21	FeH₂
Hierro	2+, 3+	FeH₃
Zinc		
Cromo		
Potasio		

Elemento	Número(s) de oxidación	Hidruros que forma
Cobre		
Estaño		
Bario		
Talio		

6. Relaciona el hidruro con su catión metálico, utiliza colores:

SnH₄ ——	Ni ³⁺
NiH ₃	Cu ²⁺
CuH	→Sn ⁴⁺
LiH	Ni ²⁺
CuH ₂	Cu ¹⁺
NiH ₂	Li ¹⁺

7. Utiliza las siguientes palabras para completar el párrafo:

Stock, metal, hidrógeno, catión, hidruros metálicos, números de oxidación, anión.

Para formar			se	requie	ere	_		<u>y</u> un		, el cati	ión
es un	_ que pue	ede ten	er uno o	más						_, el ani	ión
es el	que si	empre	trabaja	con	1-		Para	nombrarlos	se	utiliza	la
nomenclatura											

B. Escribir el nombre de un hidruro a partir de su fórmula.

Para nombrar a los hidruros a partir de su fórmula, se lee de derecha a izquierda, así, se menciona primero al **hidruro** seguido del nombre del **catión metálico**, y si es el caso se expresa su número de oxidación como número romano entre paréntesis.

Ejemplo 1. Escribir el nombre de FeH₃

a) Siguiendo las instrucciones anteriores el nombre inicial de esta fórmula es:

Hidruro de hierro

b) Para identificar el número de oxidación del metal se separa la fórmula en sus iones, como sigue:

c) En la fórmula neutra la suma de las cargas de los iones debe ser cero, de aquí se deduce que la carga de **Fe es 3+**; ya que se utilizaron 3 aniones H¹-. Y como el hierro tiene dos números de oxidación (ver anexo 3) que son 2+ y 3+, se debe especificar en el nombre cuál de ellos se está utilizando:

Hidruro de hierro (III)

Ejemplo 2. Escribir el nombre del CaH2

a) Para este compuesto el nombre de la fórmula es:

Hidruro de calcio

b) Para identificar el número de oxidación del metal se separa la fórmula en la parte positiva y negativa, el subíndice 2 que aparece en la fórmula indica que son dos iones hidruro con carga 1-:

c) Así, para 2 iones hidruro de carga (1-) se requiere la carga opuesta aportada por el calcio, que es 2+. Calcio sólo tiene un numero de oxidación (ver anexo 3) por lo que éste no se menciona en el nombre.

Ejercicios.

1. Identifica los cationes metálicos y escribe el nombre correcto de los siguientes hidruros metálicos:

Fórmula	Catión	Nomenclatura Stock
Ejemplo:		
PbH₄	Pb ⁴⁺	Hidruro de plomo (IV)
RuH ₆		
CoH₃		
BaH₂		
AlH ₃		
HgH		
GaH₃		
LiH		

2. Para los compuestos que se forman con manganeso y renio, escribe la fórmula y nombra el compuesto de acuerdo con la Nomenclatura Stock:

Ejemplo: Cromo	Manganeso	Renio
CrH₂ hidruro de cromo (II)		
CrH₃ hidruro de cromo (III)		
CrH ₆ hidruro de cromo (VI)		

3. Encierra con colores los nombres **correctos** de hidruros metálicos:

a) Hidruro de hierro (II)

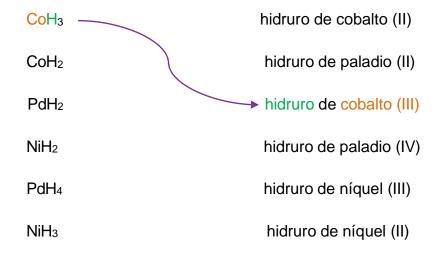
d) Hidruro de rutenio

b) Hidruro de carbono

e) Hidruro de azufre (II)

c) Hidruro de platino (IV)

f) Hidruro de calcio


4. Construye la fórmula y escribe el nombre de los hidruros con los cationes y aniones que te indican:

Catión	Anión	Fórmula	Nombre
AI ³⁺	H ¹⁻	Ejemplo: AlH ₃	Hidruro de aluminio
Ca ²⁺	H ¹⁻		
Fe ³⁺	H ¹⁻		
Pb ⁴⁺	H ¹⁻		

5. Para cada una de las siguientes fórmulas, indica el catión y anión correspondiente, y escribe su nombre:

Fórmula	Catión	Anión	Nombre
Ejemplo: <mark>Ga</mark> H₃	Ga ³⁺	H ¹⁻	hidruro de galio (III)
PdH ₄			
PbH ₂			
BeH ₂			
CoH ₂			
CoH₃			
CuH			

6. Relaciona con líneas de colores ambas columnas de acuerdo al ejemplo:

7. En la sopa de letras, ¡Trabaja un hidruro!, localiza y señala con colores los

C. Autoevaluación

	D					4 1	1 4
1	Relaciona	ıa	tormula	$con \epsilon$	el nombre	CORRECTO D	el compuesto:

a) CuH	()	hidruro de cobre (II)
b) NiH ₂	()	hidruro de estaño (II)
c) SnH ₄	()	hidruro de níquel (II)
d) NiH ₃	()	hidruro de cobre(I)
e) CuH ₂	()	hidruro de estaño (IV)
f) SnH ₂	()	hidruro de níquel (III)

II. Observa la fórmula, identifica el número de oxidación del metal y escribe el nombre correcto:

Fórmula	catión metálico	Nombre
RhH ₂		
RuH ₃		
TcH ₄		

Fórmula	catión metálico	Nombre
MoH ₂		
ZrH4		
YH ₃		

III. Encierra en un círculo la fórmula correcta de los siguientes compuestos:

Nombre	Fórmula					
Hidruro de iridio (III)	H₃lr	Ir₃H	IrH₃	Ir ₃ H ₂		
Hidruro de platino (IV)	Pt ₄ H	Pt₃H	PtH ₄	Pt ₃ H ₂		
Hidruro de oro (III)	Au₃IrO	AuH	AuH ₃	Au ₅ H ₂		
Hidruro de mercurio (II)	H₃Hg₂	Hg₃H	Hg ₆ H₃	HgH ₂		
Hidruro de francio	FrH	Fr ₂ H	HFrO ₃	Fr ₃ H ₂		
Hidruro de titanio (IV)	Ti ₂ H ₈	TiOH ₄	TiH₄	TiH		
Hidruro de vanadio (V)	VH₅	VOH ₅	V ₂ H ₅	V ₃ H ₅		

Capítulo 5.

Óxidos metálicos.

Introducción.

Los óxidos metálicos u óxidos básicos son compuestos sólidos de origen inorgánico que se encuentran formando parte de la corteza terrestre, pueden encontrarse entre los minerales como sólidos amorfos o cristalinos; al ser compuestos inorgánicos presentan altas temperaturas de fusión.

En cuanto a su composición, los óxidos metálicos son compuestos binarios formados por un metal y oxígeno, ambos en su forma iónica:

Catión metálico (M⁺) + anión óxido (O²⁻)

Los óxidos metálicos son ampliamente utilizados en la vida cotidiana; algunos ejemplos son: la cal viva u óxido de calcio (CaO) se utiliza en construcción; el óxido de aluminio (Al₂O₃₎ se usa en la producción de cerámicos, vidrio y de aluminio metálico, y el óxido de zinc que está presente en los talcos para higiene personal.

Los óxidos metálicos se encuentran en la parte sólida del planeta.

Nomenclatura.

Para identificar la fórmula de un óxido metálico se deben tomar en cuenta los símbolos de los elementos que se combinan químicamente, el metal y el oxígeno, así como el orden en que se escriben. En este capítulo se va a aplicar el sistema de Nomenclatura Stock (ver capítulo 2) para la escritura de fórmulas y nombres de los óxidos metálicos.

A. Escribir la fórmula de un óxido básico a partir de su nombre.

Las fórmulas de óxidos metálicos representan compuestos neutros, así, la unión química del catión metálico con el anión óxido (O²⁻) debe resultar un compuesto con igual número de cargas positivas y negativas.

Ejemplo 1. Escribir la fórmula del óxido de calcio.

a) Escribir el símbolo del metal con su carga positiva, en este caso el calcio solo tiene un número de oxidación, Ca²⁺ (ver anexo 2) seguido del anión óxido, O²⁻, e igualar las cargas, positivas y negativas, incrementando tantas representaciones de iones como se requieran.

Para escribir la fórmula neutra solo son necesarios un catión calcio y un anión óxido porque la suma de sus cargas es cero; así, la fórmula solo es la unión de los iones y queda expresada sin carga:

CaO

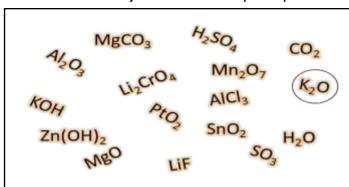
Ejemplo 2. Escribir la fórmula del óxido de talio (III).

a) Representar el catión metálico con su carga positiva; en este caso el talio tiene varios estados de oxidación y el que se está utilizando en este compuesto aparece en el nombre escrito en números romanos; seguido del anión óxido, O²-. Para igualar las cargas, positivas y negativas, se incrementan representaciones de ambos iones:

b) De esta manera, la fórmula queda neutra y, la cantidad de cationes y aniones que se requieren para escribir la fórmula se indican como subíndices numéricos.

Ejercicios.

1. De acuerdo con la información revisada, contesta las siguientes preguntas:


a) ¿Qué elemento químico te sugiere la palabra "óxido"?

b) ¿Qué significa "los óxidos metálicos son compuestos binarios"?

c) ¿Cuál es la composición general de los óxidos metálicos?

d) ¿De qué otra forma se conocen los óxidos metálicos?

2. Encierra en círculos de color rojo las fórmulas que representan óxidos básicos:

3. Consulta el anexo 2 y escribe la representación simbólica de los cationes metálicos que pueden formar los siguientes elementos:

a) Cobre

b) Litio

Cu¹⁺, Cu²⁺

g) Sodio

h) Níquel

c) Aluminio

i) Calcio

d) Mercurio

j) Platino

) Flatillo _____

e) Estaño

k) Berilio

f) Cobalto

I) Potasio

- 4. Escribe \checkmark en las fórmulas que representan óxidos metálicos y \times en las que no los representan.
 - a) SO₃ g) Na₂O
 - b) Mg(OH)₂ h) N₂O₅
 - c) ZnO i) SnO₂
 - j) Tl₂O₃ d) HNO₃
 - e) FeO k) Sn(OH)₄
 - f) K₂O I) Cl₂O₇
- 5. Relaciona las "sumas" de iones con las fórmulas correctas de la segunda columna (hay fórmulas sobrantes).

Suma de iones **Fórmulas**

- Hg²⁺ O²⁻ (e) ejemplo
 - a) Ta_5O_2
- Cu²⁺ O²⁻ ()
- b) Ru₂O₃

Cu1+ () Cu1+

c) Ta₂O₅

) Ta³⁺ O²⁻

d) RuO₃

O²⁻ Ta³⁺ O²⁻

e) HgO

O²⁻ () Ru⁶⁺ O²⁻ O²⁻

f) Cu₂O

O²⁻ Ta5+ O2-) g) Tl₂O

O²⁻ Ta⁵⁺ O²⁻

O²⁻

- h) Ta₂O₃
- i) CuO

6. Identifica y escribe los iones (catión y anión) que forman las siguientes fórmulas.

Fórmula	Catión	Anión
Ejemplo		
SnO	Sn ²⁺	O ²⁻
K₂O		
Hg ₂ O		

Fórmula	Catión	Anión
HgO		
PbO ₂		
CrO ₃		

7. Escribe las fórmulas de los óxidos básicos a partir de los siguientes cationes metálicos:

Catión	Anión	Fórmula
T /1+	O 2-	Tl ₂ O
Li ¹⁺		
Cu ¹⁺		
Fe ²⁺		

Catión	Anión	Fórmula
Cu ²⁺		
Ca ²⁺		
Fe ³⁺		
Ag ¹⁺		

8. Escribe las fórmulas para los compuestos que se citan a continuación:

Nombre	Fórmula
a) Óxido de estroncio	SrO
b) Óxido de cadmio	
c) Óxido de plomo (II)	
d) Óxido de cromo (III)	

	Nombre	Fórmula
e)	Óxido de rodio (VI)	
f)	Óxido de iridio (VI)	
g)	Óxido de paladio (IV)	
h)	Óxido de polonio (II)	

B. Escribir el nombre de un óxido metálico a partir de su fórmula.

De acuerdo con la Nomenclatura Stock (ver capítulo 2), para nombrar a los óxidos a partir de su fórmula se lee de derecha a izquierda, y si es el caso de que el metal tenga varios números de oxidación, se debe indicar con número romano al final del nombre.

Ejemplo 1. Escribir el nombre para la fórmula Na2O

a) Mencionar primero el anión, en este caso el óxido, seguido del nombre del metal:

Na₂O

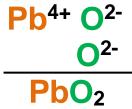
Óxido de sodio

b) Para identificar el número de oxidación del metal la fórmula se separa en sus iones, en este caso, en dos cationes sodio y un anión óxido, como se muestra en seguida

c) Como la carga del oxígeno siempre es 2- en los óxidos (O²-), y la suma de las cargas, positivas y negativas, debe dar cero entonces se deduce que la carga del Na es 1+

En este caso, el número de oxidación de sodio no se escribe en el nombre del compuesto porque este elemento sólo tiene un número de oxidación (ver anexo 2), y el nombre queda como se indicó anteriormente.

Ejemplo 2. Escribir el nombre para PbO₂


a) Mencionar primero el anión, en este caso el **óxido**, seguido del metal con su número de oxidación.

PbO₂ Óxido de plomo ...

b) Para identificar el número de oxidación del metal la fórmula se separa en los cationes y aniones correspondientes:

c) Dado que la suma de las cargas, positivas y negativas debe dar cero, la suma de las cargas de los dos óxidos (4-) se debe neutralizar con las cargas positivas del catión metálico; así se deduce que la carga y número de oxidación del Pb es 4+ (ver anexo 2).

En este caso, el número de oxidación del plomo si se representa en el nombre porque este elemento tiene dos números de oxidación y hay que especificar cuál está utilizando. Finalmente, de acuerdo con su fórmula, el nombre de este compuesto es:

Óxido de plomo (IV) Nůmero de oxidación oxidación

Donde el número romano entre paréntesis corresponde al número de oxidación y carga del hierro en esta fórmula.

Ejercicios.

Subraya la respuesta correcta:

- 1. Indica cuál es el catión de la siguiente fórmula: RuO₄
 - a) _{Ru²+}
- b) Ru⁴⁺ c) Ru⁶⁺
- d) Ru⁸⁺
- 2. Señala cuál es la carga de oxígeno en el óxido de plomo (IV):
 - a) 2+
- b) 4+
- c) 2-
- d) 4-

corresponda:	o ei nombre de	ios siguientes o	kidos basicos, segun
a. Óxido de hierro (II)		a. Ni ₂ O ₃	
b. Óxido de hierro (III)		b. Ti ₂ O ₃	
c. Óxido de calcio		c. TiO ₂	
d. Óxido de cromo (III)		d. CdO	
e. Óxido de cromo (VI)		e. PtO ₂	
f. Óxido de níquel (II)		f. PdO	
g. Óxido de níquel (III)		g. Bi ₂ O ₅	
h. Óxido de potasio		h. Co ₂ O ₃	
i. Óxido de titanio (IV)		i. Ag ₂ O	
j. Óxido de litio		j. Zr ₂ O ₃	
k. Óxido de tantalio (V)		k. IrO ₃	
I. Óxido de renio (VI)		I. Tl ₂ O ₃	
m. Óxido de aluminio		m. Au ₂ O ₃	
n. Óxido de vanadio (III)		n. CdO	
o. Óxido de plata		o. Bi ₂ O ₅	

4. Escribe los nombres de lo				-			-					_	uie	nte	s fo	órm	nula	as y	,		
utiliza diferentes colores para	a Ic	cal	iza	rlos	s er	า la	so	ра	de	leti	ras.	•									
	С	S	R	D	J	О	G	×	Р	D	A	L	K	F	Υ	Е	М	K	Ι	M	
	v	Ы	D	Υ	S	М	×	R	U	κ	L	S	С	J	×	R	L	В	Ι	Р	
a. Li₂O	М	Q	В	A	0	D	Q	Ι	В	В	o	М	М	Ń	N	С	С	A	N	N	
a. Li ₂ O	υ	0	D	D	Т	×	L	S	D	D	Ι	Р	М	Υ	Ε	٧	Ε	G	Ν	κ	
	Υ	J	×	Ń	Ι	Т	Ι	R	Ν	0	R	R	Ń	R	Ń	L	S	Ν	×	D	
b. Al ₂ O ₃	Т	R	A	Ι	٧	Н	J	D	X	Ν	D	K	R	0	Ε	Ń	Ń	Н	M	S	
	F	Н	0	S	D	Р	G	Ι	0	Q	T	Ε	F	Е	٧	Т	G	Q	٧	D	
c. CuO	Z	Ε	В	D	С	0	×	Υ	X	D	L	A	A	A	В	F	F	Р	J	Z	
	Q	٧	F	0	С	×	D	R	M	R	Е	٧	С	L	Υ	F	G	×	M	Ń	
d. Tl ₂ O	A	С	M	J	Υ	J	Ι	Ε	Е	С	Ν	С	L	Р	U	Ι	Ń	0	Р	L	
	×	D	Н	R	Е	S	Ν	M	Т	0	٧	Р	R	Ń	Υ	M	Z	М	Р	A	
a PhO	G	L	Q	М	R	G	Υ	A	X	A	F	F	٧	0	R	Ι	Ι	E	Ν	X	
e. PbO ₂	F	Ν	U	L	Ń	С	М	G	Ι	Η	L	В	L	Т	М	٧	E	N	U	Q	
	Т	Ι	Z	U	U	J	Ć	О	J	Ń	Н	Ι	G	G	F	0	В	M	Ι	L	
f. Cr ₂ O ₃	F	J	М	0	E	I	Ń	C	R	F	R	T	0	T	Υ -	A	I	Z -	Z _	0	
	N	K	5	T	Q	Ń	L	D	U	к	0	Y	D	I -	0	٧	Ι	I	P	٧	
	G	0	×	I	D	0	D	E	P	L	0	M	0	I	V	5	A	D	I	M	
	R	D	Y	Q	Н	Q.	×	I	K	N	U	0	М	I	×	K	J	×	K	Р	
	0	I	I T	E	R	В	0	C O	E	D	0	D	I Ń	X	O E	B P	E U	С	E	K Ń	
	О	1		1	L	Е	D	U	D	1	X	0	N	1	Е	Р	U	L	Q	N	
 Identifica el catión presen escribe su símbolo sobre las 				a u	ino	de	los	s się	guie	ente	es i	nor	nbr	es	o fo	órm	nula	ıs y	,		
	(e	jem	pla)									(еје	emp	olo)						
a) óxido de <mark>estaño</mark> (II)		Sn ²		,				h)	N	i₀O	^		` `	Ni	•						
a) oxido de estario (II)		<u> </u>						11)	14	120	3					_					
b) óxido de plomo (IV) _				_				i)	Ti	i ₂ O:	3										
c) óxido de magnesio _				_				j)	Ti	iO ₂											

d) óxido de cromo (III)

e) óxido de cromo (VI)

f) óxido de níquel (II)

g) óxido de cobalto (III)

k) CdO

I) PtO₂

m) PdO

n) Os₂O₇

- 6. Subraya ¿cuál es el anión presente en las fórmulas de todos los óxidos básicos?
- a) óxido (O²-) b) peróxido (O¹-)
- c) Ion metálico (M n+)
- d) hidróxido, (OH)¹⁻
- 7. Relaciona la fórmula con su nombre correcto:

Fórmulas		Nombres
Ta ₂ O ₅	(j)	a) Óxido de platino (IV)
Ha-O	()	b) Óxido de mercurio II
Hg₂O	()	c) óxido de vanadio (II)
PtO	()	d) óxido de rutenio (VI)
RuO₃	()	e) óxido de tantalio (III)
NuO ₃	()	f) óxido de rutenio (II)
VO_2	()	g) óxido de rutenio (III)
PtO ₂	()	h) óxido de tantalio (IV)
1 102	()	i) óxido de cobre (I)
Ru_2O_3	()	j) óxido de tantalio (V)
Ta ₂ O ₃	()	k) óxido de vanadio (IV)
14203	()	l) óxido de platino (II)
Cu ₂ O	()	m) óxido de vanadio (V)
V ₂ O ₅	()	n) óxido de mercurio (I)
.200	()	o) óxido de paladio (IV)

C. Autoevaluación.

I. Escribe F (falso) o V (verdadero) en las siguientes afirmaciones:	
a) La composición química de los óxidos básicos es: metal y oxígeno	

II. Relaciona con líneas de colores las fórmulas con sus correspondientes nombres (sobran algunos nombres):

Fórmula	Nombre
0-0	Óxido de talio (III)
CaO SnO ₂	Óxido de calcio (II)
	Óxido de talio (I)
SnO	Óxido de estaño (II)
Tl ₂ O ₃	Óxido de calcio
Tl ₂ O	Óxido de estaño (IV)

III. Señala la opción donde solo se representan óxidos básicos:

a) CaO, CO₂, MgO

- c) SO_3 , H_2O , N_2O_3
- b) Fe(OH)₃, CaO, MgO
- d) ZrO₂, Ni₂O₃, PbO₂

Capítulo 6.

Hidróxidos.

Introducción.

Los compuestos llamados hidróxidos o bases son compuestos inorgánicos ternarios formados por un metal, oxígeno e hidrógeno. Los hidróxidos metálicos a temperatura ambiente son sólidos y no conducen la corriente eléctrica, sin embargo, al fundirse o disolverse en agua si conducen la electricidad porque se disocian y forman iones.

Nomenclatura.

La nomenclatura que se va a utilizar para nombrar a los hidróxidos es la **Nomenclatura Stock (**capítulo dos).

Los hidróxidos o bases tienen en su fórmula algún **catión** metálico o el catión amonio (NH₄¹⁺) y, el **anión hidróxido, (OH)**¹⁻.

Los hidróxidos de magnesio y aluminio se utilizan como auxiliares para tratar la acidez estomacal, por lo que en la industria farmacéutica se conocen como antiácidos.

Catión metálico (M⁺) + (OH)¹⁻

A. Escribir la fórmula de un hidróxido a partir de su nombre.

Al igual que los hidruros y los óxidos básicos, la escritura de los hidróxidos se apega a las reglas vistas en el capítulo dos.

Ejemplo 1. Escribir la fórmula del hidróxido de sodio.

a) Se escribe el catión que es el ion sodio con su carga (consulta el anexo 2) seguido del anión que es el ion hidróxido (OH¹-) como se muestra a continuación:

Na¹⁺ OH¹⁻

b) Dado que los compuestos son neutros, para igualar las cargas positivas y negativas se requiere de un ion sodio y un ion hidróxido como se expresa a continuación:

c) Para escribir la fórmula se eliminan las cargas y el número uno como subíndice no se escribe, quedando finalmente la fórmula como sigue:

NaOH

Ejemplo 2. Escribir la fórmula del hidróxido de cobre (II).

a) Primero se escribe el catión con su carga, en este caso el cobre es 2+ que se indica con el número romano entre paréntesis, seguido del ion hidróxido como se muestra a continuación:

b) En este ejemplo, la cantidad de cargas positivas y negativas es diferente; por lo que, para equilibrarlas se requiere de un ion de cobre y dos iones hidróxido para formar el compuesto neutro:

Para construir la fórmula se requiere un ion cobre y dos iones hidróxido. En la fórmula final el **subíndice 2** indica la cantidad de iones poliatómicos iguales, ¡recuerda que éstos deben agruparse entre paréntesis!

Ejercicios.

1. Escribe la fórmula general de los hidróxidos.

2. ¿Cuál de los sig	guientes hidróxidos ti	ene un metal	de la familia	III A?				
a) LiOH	b) Ba (OH) ₂	c) AI (OH)3	d) Cı	HOL				
3. En los nombres	de los compuestos i	norgánicos, e	l número rom	nano indica:				
a) la carga del ion	hidróxido	b) la familia	amilia del metal					
c) el período del metal d) el estado de oxidación del metal								
4. La fórmula corre	ecta del hidróxido de	plomo (IV) es	S:					
a) PbO	b) PbO ₂	c) Pb (OH)	2 d) Pk	OH)4				
5. A los compuest	5. A los compuestos llamados hidróxidos también se les conoce como:							
a) bases	b) óxidos metálicos	c) oxiácido	os	d) hidruros				
6. La fórmula que	se obtiene al combin	ar el ion amo	nio y el ion hi	dróxido es:				
a) NH ₄ HO	b) NH ₄ OH	c) (NH ₄) C	Н	d) (NH) ₄ OH				
7. La fórmula corre	ecta del hidróxido de	hierro (III) es	:					
a) FeOH₃	b) Fe ₂ O ₃	c) FeO ₃	d) Fe	e (OH) ₃				
8. La carga del ior	n hidróxido es:							
a) (1-)	b) (1+)	c) (3-)	d) (3+)					

9. Identifica el catión y anión de los siguientes compuestos y escribe la fórmula.

Nombre	Catión metálico	Anión	Fórmula
Ejemplo: hidróxido de calcio	Ca ²⁺	(OH) ¹⁻	Ca(OH) ₂
hidróxido de cobalto (II)			
hidróxido de cobalto (III)			
hidróxido de rubidio			
hidróxido de bario			
hidróxido de potasio			
hidróxido de sodio			
hidróxido de cobre (II)			
hidróxido de plomo (II)			

B. Escribir el nombre de un hidróxido a partir de su fórmula.

a) Para nombrar a los hidróxidos, al igual que en los compuestos anteriores, primero se nombra el anión seguido del catión, esto es, primero el ion hidróxido (OH)¹⁻ y luego el catión, por ejemplo:

hidróxido de potasio

b) Para identificar el número de oxidación del metal, la fórmula se separa en la parte positiva y negativa:

K? OH1-

c) Dado que la suma de las cargas debe dar cero, se deduce que la carga el potasio debe ser 1+:

El nombre de este compuesto es:

Hidróxido de potasio

NO se indica el número de oxidación 1+ en el nombre porque tiene **sólo** "un número de oxidación" (consultar anexo 2).

Cuando un elemento metálico tiene dos o más números de oxidación, se debe indicar en el nombre qué número de oxidación se está utilizando en la fórmula y se indica al final del nombre con un número romano entre paréntesis, por ejemplo:

b) Para identificar el número de oxidación del metal, la fórmula se separa en el catión y anión considerando la cantidad de cada uno ellos que se especifica a través del subíndice, en este caso son dos iones hidróxido:

c) Dado que la suma de las cargas, positivas y negativas debe dar cero, la suma global negativa de los hidróxidos es (2-) y se debe neutralizar con la carga global positiva del catión metálico; así se deduce que la carga y número de oxidación del Fe es 2+ (ver anexo 2).

En este caso, el número de oxidación del hierro (2+) **s**í se indica en el nombre porque este elemento tiene dos números de oxidación (2+, 3+) y hay que especificar cuál se está utilizando. Por lo tanto, el nombre de este compuesto es:

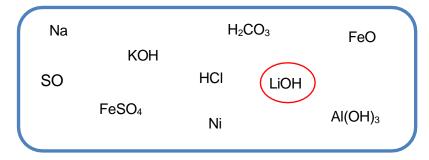
Hidróxido de hierro (II)

midroxido de nierro (II)

Ejercicios.

1. Escribe el nombre de los compuestos de acuerdo a su fórmula utilizando la nomenclatura Stock:

Fórmula	Nombre
Ejemplo: LiOH	Hidróxido de litio
CsOH	
Mg (OH) ₂	
Sr (OH) ₂	
KOH	
Cu (OH) ₂	
Ті (ОН)з	
Zn(OH) ₂	


Fórmula	Nombre
Fe (OH) ₂	
Fe (OH) ₃	
Ni (OH)2	
Ni (OH)₃	
Al (OH) ₃	
Co (OH) ₂	
Pd (OH) ₄	
Pb (OH) ₂	

Numero de

oxidación del metal 2. En las siguientes fórmulas con nombres de hidróxidos hay errores, localízalos, enciérralos con un círculo y luego escríbelos correctamente.

Fórmula y nombre	Fórmula y nombre correctos
Ejemplo:	
a) LiOH hidróxido de litio	LiOH hidróxido de litio
b) Pb (OH) ₂ hidróxido de plomo 2	
c) Ca (OH) ₂ hidróxido de calcio II	
d) KOH hidróxido de potasio	
e) Al (OH) ₃ hidróxido de aluminio	
f) Pb (OH) ₄ hidróxido de plomo	
g) TiOH ₃ hidróxido de titanio (III)	
h) Pd ₄ OH hidróxido de paladio (IV)	

3. Identifica y encierra en círculos rojos las fórmulas de los hidróxidos.

4. Escribe el nombre correcto de los siguientes hidróxidos a partir de las siguientes fórmulas:

a) Ba (OH) ₂	d) Ga (OH)₃
b) Cd (OH) ₂	e) Pb (OH) ₄
c) NH ₄ OH	f) Cr (OH) ₆
5. Escribe la fórmula de los siguientes cor	mpuestos a partir de su nombre:
a) hidróxido de magnesio	d) hidróxido de manganeso (II)
b) hidróxido de plomo (II)	e) hidróxido de cobalto (III)
c) hidróxido de bario	f) hidróxido de sodio

6. Combina los siguientes cationes con el ion hidróxido y completa la tabla:

Catión metálico	Anión hidróxido	Fórmula	Nombre
Sr ²⁺			
Ga ³⁺			
Mn ²⁺			
Mn ⁴⁺			
Co ²⁺			
Co ³⁺			
Cr ²⁺			
Cr ³⁺			

C. Autoevaluación.

Er	Encierra la respuesta correcta.					
1.	1. ¿Cuál es el anión que contienen las bases?					
a)	NO ²⁻	b) OH ¹⁻		c) O ²⁻		d) H ¹⁻
2.	¿Cuál es la fórm	ula que representa a	un hic	dróxido?		
a)	LiH	b) Na ₂ O		c) HCl		d) NH4OH
3.	La fórmula correc	cta del hidróxido de d	cobre (II) es:		
a)	CuOH	b) Cu (OH) ₂		c) CuOH ₂		d) Cu₂OH
4.	¿Cuál es la fórm	ula correcta del hidro	óxido d	e boro?		
a)	B(OH) ₃	b) Ba (OH) ₂		c) BOH		d) B ₂ O ₃
5.	El ion hidróxido e	es un:				
,	catión monoatóm catión poliatómic		c) anión poliatómicod) anión monoatómico			
6.	El nombre correc	to de la siguiente fó	rmula l	Ni (OH)2 es:		
a)	hidróxido de níqu	uel 2	c) hidr	óxido de níqu	el dos	
b)	hidróxido de níqu	iel	d) hidi	róxido de níqu	el (II)	
7.	El nombre correc	eto de Sn (OH) ₄ es:				
a)	hidróxido de esta	ทัด	c) hidr	óxido de estai	ño (IV)	
b)	hidróxido de anti	monio	d) hidróxido de zinc IV			
8.	El estado de oxid	lación del plomo en	Pb (Ol	H) ₄ es:		
a)	4+	b) 4-	c) 1+		d) 1-	
9.	La carga del ion	hidróxido en Bi (OH)	3 es :			
a)	4+	b) 4-	c) 1+		d) 1-	
10	. ¿Cuál de las sig	guientes fórmulas es	la con	recta?		
a)	Li (OH)₁	b) Ca (OH)₃		c) AI (OH ₃)		d) NaOH

Capítulo 7.

Anhídridos.

Introducción.

Los óxidos no metálicos también son llamados óxidos ácidos o anhídridos, éstos son

compuestos binarios y están formados por la unión química de un no metal con oxígeno. Los anhídridos, generalmente son gases y reaccionan con agua dando lugar a la formacion de los oxiácidos.

Nomenclatura.

Para nombrar a los anhídridos se utilizarán los sistemas de nomenclatura Tradicional y Stock.

Los óxidos ácidos o anhídridos se encuentran en diferentes ámbitos de nuestra vida diaria; por ejemplo, el anhídrido carbónico (CO₂) interviene en los procesos de respiración y fotosíntesis, también es producto de las combustiones; además, en la industria se utiliza en la gasificación de bebidas y en extintores.

A. Escribir la fórmula a partir del nombre.

Como se ha mencionado en capítulos anteriores, para escribir la fórmula de los anhídridos primero se escribe la parte positiva y luego la negativa:

Catión no metálico (NM⁺) + óxido (O²⁻)

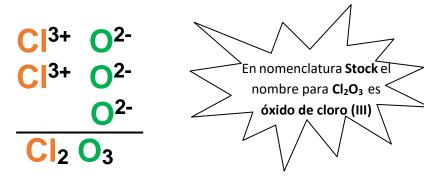
En este caso el catión es un **no metal** y la carga de éste será alguno de sus números de oxidación y la parte negativa siempre será el anión **óxido** (O²-). Finalmente, para escribir la fórmula se deben igualar las cargas positivas con las negativas, incrementando las representaciones de iones (consultar capítulo 2).

Ejemplo 1. Construir las fórmulas de los **anhídridos del carbono** (óxidos del carbono).

a) En la formación de estos compuestos necesitamos conocer los números de

oxidación positivos que tiene el no metal, en este caso:

Caso 1) Combinando el carbono con su primer estado de oxidación (2+) y oxígeno (2-) se obtiene la fórmula neutra anhídrido carbonoso. La terminación -oso está relacionada con el número de oxidación menor del carbono (ver tabla 1):


Caso 2) Para el caso del **carbono** con estado de oxidación **(4+)**, se combina el catión C⁴⁺ con el anión O²⁻:

a) Para igualar la carga global positiva con la negativa se incrementa un ion más del O²⁻, finalmente se construye la fórmula del **anhídrido carbónico**, CO₂. La terminación -**ico** está relacionada con el número de oxidación mayor del carbono (ver tabla 1.

Ejemplo 2. Escribir la fórmula del anhídrido cloroso.

a) El cloro tiene cuatro números de oxidación positivos: Cl¹⁺, Cl³⁺, Cl⁵⁺, Cl⁷⁺.

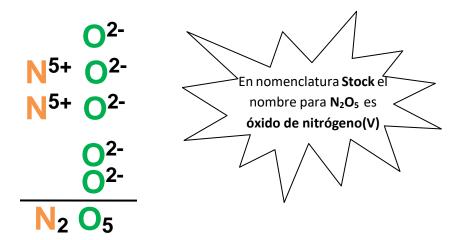
La terminación **-oso** en el nombre de este compuesto se asocia a uno de los números de oxidación: Cl³+ (más adelante se explicará la relación entre el nombre de los anhídridos y los números de oxidación); de esta forma, el catión es el Cl³+ y el anión es el O²-, por lo tanto, la fórmula que representa al **anhídrido cloroso** se construye como sigue:

B. Escribir el nombre de un anhídrido a partir de su fórmula.

De acuerdo con la Nomenclatura Tradicional, los nombres de los anhídridos se relacionan con el número de oxidación del elemento no metálico que se combina con oxígeno. Es necesario identificar al elemento no metálico, revisar cuántos y cuáles números de oxidación tiene reportados en la tabla periódica y asociarlo con los criterios de la tabla 1:

Tabla 1. Relación del nombre de los anhídridos con los números de oxidación.

Elemento con	Prefijos y terminación de no metales en anhídridos			Nombres de los anhídridos:	
	Hipooso	- 0S0	-ico	Perico	annunuos.
un número de oxidación Familia IIIA Boro (B ³⁺)	x	X	-ico	х	anhídrido bór ico , B ₂ O ₃
dos números de oxidación Familia IVA Carbono (C ²⁺ , C ⁴⁺)	х	-oso C ²⁺	-ico C ⁴⁺	x	anhídrido carbon oso , CO anhídrido carbón ico , CO ₂
tres números de oxidación Familia VA Nitrógeno*(N¹+,N³+, N⁵+) Fósforo* (P¹+,P³+, P⁵+) Familia VIA Azufre* (S²+, S⁴+, S⁶+)	Hipooso N ¹⁺	-oso N ³⁺	-ico N ⁵⁺	х	anhídrido hiponitroso, N ₂ O anhídrido nitroso, N ₂ O ₃ anhídrido nítrico N ₂ O ₅

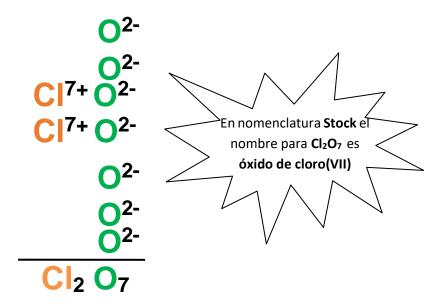

cuatro números de					anhídrido
oxidación Familia VIIA Halógenos: Cl, Br ,I (Cl ¹⁺ , Cl ³⁺ , Cl ⁵⁺ , Cl ⁷⁺)	Hipooso Cl ¹⁺	-oso Cl+3	-ico Cl ⁵⁺	Perico	hipocloroso, Cl ₂ O anhídrido cloroso, Cl ₂ O ₃ anhídrido clórico, Cl ₂ O ₅ anhídrido
					anhídrido pe rclór ico, Cl₂O ₇

^{*} Las raíces para nombrar a los anhídridos de azufre es **sulfur-**, así, se nombra sulfúrico no azúfrico; igualmente para los anhídridos de nitrógeno la raíz es nitr-, por lo que se nombra anhídrido nitroso y no nitrogenoso.

Ejemplo 1. Escribir la fórmula del anhídrido nítrico.

a) El nitrógeno tiene tres números de oxidación positivos: N1+, N3+, N5+.

La terminación **–ico** del nombre de este compuesto se asocia a uno de los números de oxidación que es el N⁵⁺, de esta forma, el catión es el N⁵⁺ y el anión es O²⁻, para construir la fórmula neutra se requiere de dos iones del nitrógeno con carga (5+) y cinco iones de oxígeno con carga (2-):



Ejemplo 2. Escribir la fórmula del anhídrido perclórico.

a) El número de oxidación de cloro para este compuesto es: CI7+

El prefijo **per-** y la terminación **-oso** del nombre del compuesto se asocian al número de oxidación (7+) del cloro, de esta forma, el catión es el Cl⁷⁺ y el anión es O²⁻, para construir la fórmula neutra se requiere de dos iones del cloro con carga (7+) y siete

iones de oxígeno con carga (2-):

Recuerda que para obtener la fórmula neutra la suma de las cargas de los cationes (+14) debe ser igual a la suma de la carga de los aniones (-14).

Ejercicios.

1. Escribe los nombres de los siguientes anhídridos:

Br ₂ O	Br ₂ O ₃	Br ₂ O ₅	Br ₂ O ₇

2. Identifica los números de oxidación de los no metales y escribe el nombre del compuesto:

Fórmula del anhídrido	Catión	Anión	Nombre del compuesto
B ₂ O ₃			
СО			

CO ₂		
SO ₂		
SO ₃		
P ₂ O ₃		
P ₂ O ₅		
Cl ₂ O		

3. ¿Cuántos números de oxidación tiene el elemento y cuáles anhídridos formará?

Elemento	Números de oxidación	Fórmulas de los anhídridos
Selenio	4+, 6+	
Fósforo		
Silicio		
Azufre		
Bromo		

a) SO	b) S ₂ O	c) SO ₂	d) SO ₃		
5. Encierra en un círculo de color la fórmula del anhídrido sulfúrico:					
a) SO	b) S ₂ O	c) SO ₂	d) SO ₃		
6. Señala la fórmu	la del anhídrido selénico:				
a) SeO	b) Se ₂ O	c) SeO ₂	d) SeO ₃		
7. Señala la fórmu	la del anhídrido peryódico:				
a) IO ₅	b) I ₇ O	c) I ₂ O ₇	d) I ₂ O ₅		
8. Señala la fórmu	la del anhídrido fosfórico:				
a) P ₂ O ₅	b) P ₅ O ₂	c) P ₂ O ₇	d) P ₂ O ₃		
Autoevaluación	Autoevaluación				
Encierra la respue	sta correcta.				
1. ¿Cuál es el anió	n que contienen los óxidos	?			
a) H ¹⁻	b) (OH) ¹⁻	c) O ²⁻	d) H ¹⁺		
2. ¿Cuál es la fórm	nula que representa a un ó	kido ácido?			
a) HCIO	b) Li ₂ O	c) CO	d) Na ₂ O		
3. La fórmula corre	3. La fórmula correcta del óxido de fósforo (III) es:				
a) PO ₄	b) P ₂ O ₃	c) P ₂ O ₅	d) PO ₃		
4. ¿Cuál es la fórmula correcta del anhídrido bórico?					
a) BO ₃	b) B ₂ O ₃	c) B ₃ O ₂	d) B ₃ O ₅		
5. El nombre del anhídrido periódico utilizando la nomenclatura Stock es:					
a) óxido de yodo					
c) óxido de yodo (l))	d) óxido de yodo (\	/II)		

4. Encierra en un círculo de color la fórmula del anhídrido sulfuroso:

6. En la nomenclatura tradicional la	a siguiente fói	mı	ıla Br ₂ O se nombra como:
a) anhídrido hipobromoso	C) ó	xido de bromo (I)
b) óxido de bromo (II)	d) a	nhídrido bromoso
7. Relaciona los nombres de los ar	nhídridos con	su	fórmula correcta:
Fórmula			Nombre
a) SO₃	()	Anhídrido nitroso
b) SO ₂	()	Anhídrido fosfórico
c) P ₂ O ₃	()	Anhídrido nítrico
d) P ₂ O ₅	()	Anhídrido hiposulfuroso

e) N₂O₃

f) N₂O₅

g) SO

) Anhídrido fosforoso

) Anhídrido sulfúrico

) Anhídrido sulfuroso

Capítulo 8.

Oxiácidos.

Introducción.

Los oxiácidos son compuestos que tienen sabores agrios y presentan valores de pH menores a 7, al ser ácidos cambian el papel tornasol del color azul al rosa, el anaranjado de metilo al rojo y dejan incolora a la fenolftaleína. De acuerdo con su fuerza, los oxiácidos pueden ser corrosivos y producir quemaduras en la piel, en disolución acuosa se ionizan y son buenos conductores de electricidad; estos compuestos reaccionan con los hidróxidos para formar oxisales y agua.

La síntesis de estos compuestos ternarios se lleva a cabo a partir de la reacción de los óxidos ácidos (o anhídridos) con agua; en la ecuación de dicha reacción se observa que los anhídridos integran moléculas de agua a su estructura, tal y como se muestra en la siguiente ecuación:

El ácido sulfúrico, H₂SO₄, es el oxiácido que más se produce en el mundo, sus múltiples usos le proporcionan un valor comercial elevado; algunas aplicaciones de este ácido son: la fabricación de fertilizantes, la refinación del petróleo, la industria metalurgia, en la fabricación de papel, entre muchos otros.

$$CO_2 + H_2O \longrightarrow H_2CO_3$$

De manera general, estos compuestos están formados por el **catión hidrógeno** (H¹+) y por un **oxoanión** (ion negativo formado por la agrupación de **no metal** y **oxígeno**):

Nomenclatura.

A nivel mundial, uno de los sistemas de nomenclatura más utilizados para nombrar a los oxiácidos es el sistema Tradicional, el cual es aceptado por la IUPAC (International Union of Pure and Applied Chemistry); de acuerdo con este organismo

^{*} NM se refiere a un no Metal pero en algunos casos puede ser un metal de transición.

debe existir una tendencia hacia una nomenclatura internacional más sistemática: la nomenclatura IUPAC (por sus siglas en inglés), sin embargo, esta transformación aún está en proceso.

La Nomenclatura Tradicional de los oxiácidos está muy relacionada con la de los anhídridos de los que provienen y se puede tomar como base para la nomenclatura de los oxiácidos; sin embargo, en este cuadernillo se muestra el uso de una tabla de aniones para escribir y nombrar a los oxiácidos bajo el sistema Tradicional.

A. Escribir la fórmula de un oxiácido a partir de su nombre recurriendo a la tabla de aniones (anexo2).

Para construir la fórmula del compuesto se siguen los pasos revisados en el capítulo 2, por lo que primero se escribe la parte positiva y luego la negativa. En este caso, el catión siempre es de hidrógeno (H¹+), y la parte negativa siempre corresponderá a un anión poliatómico (oxoanión); estos aniones son prácticamente los mismos que se utilizan para las oxisales (ver anexo 2).

Así, lo primero es tomar en cuenta que el nombre comienza con la palabra **ácido** lo que nos indica que la fórmula tiene e inicia con el catión H¹⁺

Para nombrar al anión de los oxiácidos hay que identificarlo y asociarle su nombre de acuerdo con la tabla de aniones (ver anexo 2), posteriormente, hay que modificar este nombre cambiándole la terminación:

Tabla 1. Cambios de terminación en nombres de aniones

Aniones en:		
Sales	Ácidos	
-ito	-080	
-ato	-ico	

Los prefijos **hipo-** y **per-** se conservan, aunque las terminaciones cambien (ver ejemplos en tabla 2).

Tabla 2. Ejemplos de transformación de los nombres de los aniones sal-ácido.

Oxoanión (en sales)	Anión en ácidos
-ato	-ico
Ejemplo	_
Anión clor ato	Ácido clór ico
(CIO ₃) ¹⁻	H CIO ₃
Ejemplo	
	_
Anión per clor ato	Ácido per clór ico
(CIO ₄) ¹⁻	H CIO ₄

Oxoanión (en sales)	Anión en ácidos
-ito	-oso
Ejemplo 1.	,
Anión clor ito	Ácido clor oso
(CIO ₂) ¹⁻	H CIO ₂
Ejemplo 2.	
Anión hipo clor ito	Ácido hipo clor oso
(CIO) ¹⁻	HCIO ₄

Para el caso de azufre y fósforo las raíces de sus nombres varían como sigue:

Oxoanión (en sales)	Anión en ácidos
Nombre del	Oxiácido
oxoanión	
Anión sulf ito	Ácido sulfur oso
(SO ₃) ²⁻	H ₂ SO ₄
Anión sulf ato	Ácido sulfúr ico
(SO ₄) ²⁻	H ₂ SO ₄

Oxoanión (en sales)	Anión en ácidos
Nombre del	Oxiácido
oxoanión	
Anión fosf ito	Ácido fosfor oso
(PO ₃) ³⁻	H ₃ PO ₃
Anión fosf ato	Ácido fosfór ico
(PO ₄) ³⁻	H ₃ PO ₄

Ejemplo 1. Escribir la fórmula del ácido perclórico.

a) Recuerda que la palabra ácido indica que la fórmula inicia con el catión H1+

b) Busca en el anexo 2 la simbología del anión de acuerdo con el elemento central, en este ejemplo es el cloro; toma en cuenta que la terminación del anión cambia de la de oxisales a la del oxiácido (y viceversa), en este caso la terminación **–ico** tiene relación con la terminación **-ato**, y el prefijo **per-** se mantiene, por lo que si es **per**clór**ico** se busca el anión **per**clor**ato**, (ClO₄)¹⁻, (ver tabla 1)

c) Finalmente, para obtener la fórmula neutra se igualan las cargas positivas y negativas, en este caso se necesita un catión y un solo anión.

¡Observa! El anión (ClO₄)¹- es una agrupación de átomos que solo se utiliza una vez en la fórmula y el subíndice 4 es parte de dicho anión e indica que hay 4 átomos de oxígeno en el oxoanión.

Ejemplo 2. Escribir la fórmula del ácido fosforoso.

a) La fórmula inicia con el catión H1+

b) De acuerdo con el elemento central, el nombre del oxiácido de terminación **–oso** se relaciona con el anión de terminación **–ito** (tabla 1), así, para el ácido fosfor**oso**, se busca la fórmula del anión fosf**ito**, (PO₃)³⁻ (ver anexo 2).

c) Finalmente se igualan las cargas positivas y negativas para escribir la fórmula neutra, de esta manera, en este ejemplo se necesitan tres cationes (3+) y un solo anión (3-) para que esto se cumpla, recuerda que la cantidad de iones se indica como subíndice debajo de los símbolos correspondientes y que el subíndice uno no se escribe.

Ejercicios.

1. Consulta el anexo 2 y escribe la representación simbólica de los siguientes iones.

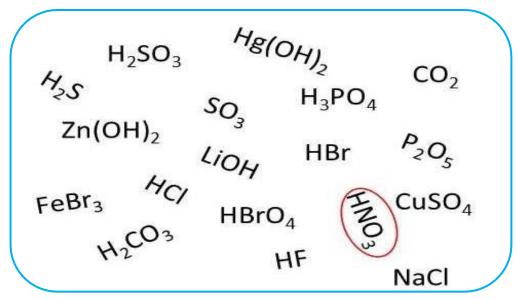
Nombre del ion	Nivel simbólico
Ejemplo:	
Yodito	(IO ₂) ¹⁻
Yodato	
Fosfato	
Clorato	
Peryodato	
Hipobromito	

Nombre del ion	Nivel simbólico
Fosfito	
Bromito	
Sulfato	
Nitrito	
Nitrato	
Perclorato	

2. Cambia la terminación del nombre del anión a la terminación correspondiente para nombrar al oxiácido.

Nombre del ion	Nombre del oxiácido
Ejemplo:	Ácido hipobromoso
hipobromito	
Yodato	
Hipoyodito	
Clorato	
Peryodato	
Fosfato	

Nombre del	Nombre del oxiácido
ion	
Yodito	
Fosfito	
Bromito	
Sulfato	
Nitrito	
Nitrato	
Perclorato	


3. Identifica los aniones y da el nombre correspondiente a los oxiácidos.

Fórmula del oxiácido	Anión	Nombre del oxiácido
Ejemplo	Clor ato	
HClO ₃	(CIO ₃) ¹⁻	Ácido clór ico
H ₃ PO ₃		
HNO ₂		
H ₂ SeO ₄		
HIO		

4. Completa la siguiente tabla con los nombres correspondientes.

Anión	Nombre del anión	Fórmula del oxiácido	Nombre del oxiácido
Ejemplo			
(CIO) ¹⁻	hipo clor ito	HCIO	Ácido hipo clor oso
(CIO ₂) ¹⁻		HCIO ₂	
(NO ₂) ¹⁻		HNO ₂	
(VO ₄) ³⁻		H ₃ VO ₄	
(IO ₄) ¹⁻		HIO ₄	
(NO ₃) ¹⁻		HNO ₃	
(SO ₃) ²⁻		H ₂ SO ₃	
(PO ₄) ³⁻		H ₃ PO ₄	

5. Rodea con un círculo de color rojo las fórmulas de los oxiácidos que aparecen en el siguiente recuadro.

6. Escribe los nombres y las fórmulas de los oxiácidos correspondientes a los aniones que tienen como elemento central al yodo.

Aniones	Nombre del anión	Fórmula del oxiácido	Nombre del oxiácido
(IO) ¹⁻	hipoyod ito	HIO	Ácido hipoyod oso
(IO ₂) ¹⁻			
(IO ₃) ¹⁻			
(IO ₄) ¹⁻			

7. Escribe los iones en los que se separa el ácido fosfórico y representa la suma de iones e indica el nombre del oxoanión.

B. Escribir el nombre de un oxiácido a partir de su fórmula recurriendo a la tabla de aniones (anexo2).

Para nombrar a un ácido a partir de su fórmula ésta se separa en los iones correspondientes, se identifica el anión, se localiza su nombre (anexo 2) y se cambia la terminación de acuerdo a la tabla 1; finalmente, el compuesto se nombra anteponiendo la palabra **ácido** seguida del anión con la terminación correspondiente.

Ejemplo 1. Escribir el nombre para la fórmula H2SO4.

a) Dado que la fórmula inicia con el catión hidrógeno (H1+) entonces el compuesto se clasifica como ácido y su nombre comienza con esta palabra. La fórmula se separa de la siguiente manera:

b) Identificar al anión y buscar su nombre en la tabla de iones del anexo 2, en este caso el anión es sulfato (SO₄)²⁻, de este modo, y de acuerdo con la tabla 1 se cambia la terminación -ico y como el azufre es un caso especial, el término sulfato cambia a sulfúrico y el nombre queda como sigue:

Ácido sulfúrico

Ejemplo 2. Escribir el nombre para la fórmula H₃VO₄.

a) La fórmula inicia con el catión hidrógeno (H1+) entonces el compuesto es un ácido y su nombre comienza con esta palabra. La fórmula se puede separar de la siguiente manera:

b) Ahora se identifica al anión y se busca en la tabla de iones del anexo 2, en este caso el anión es vanad**ato** (VO₄)³⁻, de acuerdo con la tabla 1, el término vanad**ato** se cambia por vanád**ico** y el nombre del compuesto queda como sigue:

Ácido vanádico

Ejercicios.

1. Separa las siguientes fórmulas en los iones correspondientes e indica el nombre de los ácidos que aparecen en el siguiente cuadro:

Fórmula del	Catión	Oxoanión	Nombre del oxiácido
oxiácido			
Ejemplo		Anión telur ito	Ácido Telur oso
H ₂ TeO ₃	H ¹⁺	(TeO₃)²-	
H ₂ CrO ₃			
H ₃ PO ₄			
HBrO ₃			
HNO ₃			
H ₂ SeO ₄			
H ₂ SO ₃			
HBrO ₂			
HIO ₂			

2. Escribe los nombres para los oxoaniones de cloro, completa la fórmula para los oxiácidos que se forman e indica su nombre.

Simbología del oxoanión	Nombre del oxoanión	Fórmula del oxiácido	Nombre del oxiácido
Ejemplo (CIO)1-	Hipoclor ito	HCIO	Ácido hipoclor oso
(CIO ₂) ¹⁻			
(CIO ₃) ¹⁻			
(ClO ₄) ¹⁻			

3. Escribe los nombres para los oxoaniones de bromo, completa la fórmula para los ácidos que se forman e indica su nombre.

Simbología del oxoanión	Nombre del oxoanión	Fórmula del oxiácido	Nombre del oxiácido
(BrO) ¹⁻			
(BrO ₂) ¹⁻			
(BrO ₃) ¹⁻			
(BrO ₄) ¹⁻			

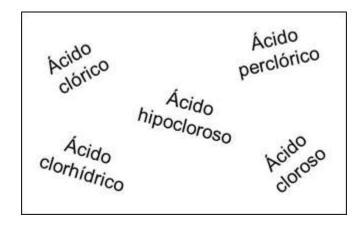
4. Escribe los nombres para los oxoaniones de yodo, completa la fórmula para los ácidos que se forman e indica su nombre.

Simbología del oxoanión	Nombre del oxoanión	Fórmula del oxiácido	Nombre del oxiácido
(IO) ¹⁻			
(IO ₂) ¹⁻			
(IO ₃) ¹⁻			
(IO ₄) ¹⁻			

5. Escribe los nombres para los oxoaniones de los elementos de la familia VA, completa la fórmula para los ácidos que se forman e indica su nombre.

Simbología del oxoanión	Nombre del oxoanión	Fórmula del oxiácido	Nombre del oxiácido
Ejemplo			
(NO ₂) ¹⁻			
(NO ₃) ¹⁻			
(PO ₃) ³⁻			
(PO ₄) ³⁻			

C. Autoevaluación


1. Escribe los nombres para los oxoaniones de los elementos de la familia IVA, completa la fórmula para los ácidos que se forman e indica su nombre.

\$ Simbología del oxoanión	Nombre del oxoanión	Fórmula del oxiácido	Nombre del oxiácido
(CO ₃) ²⁻			
(SeO ₃) ²⁻			

2. Relaciona las columnas indicando en el paréntesis la opción que corresponde al nombre de cada fórmula.

Fórmula				Nombre
HNO ₃	()	1.	Ácido fosfórico
H ₂ SO ₃	()	2.	Ácido cloroso
HNO ₂	()	3.	Ácido nítrico
H ₂ SO ₄	()	4.	Ácido clórico
HCIO ₂	()	5.	Ácido sulfúrico
H ₃ PO ₃	()	6.	Ácido nitroso
H ₃ PO ₄	()	7.	Ácido sulfuroso
HCIO ₃	()	8.	Ácido fosforoso

3. Encierra en un círculo de color el nombre correspondiente a la fórmula HCIO₄:

D. Escribir y nombrar la fórmula de un oxiácido a partir del número de oxidación del elemento central.

Como se indicó anteriormente la composición general de los oxoácidos consiste en hidrógeno, no metal (o en ocasiones metal de transición) y oxígeno; lo que se simboliza a través de la siguiente fórmula general:

$$H^{1+} + (NMO)^{-}$$

Para nombrar el oxoácido es necesario:

a) Corroborar que la fórmula corresponda a un oxiácido:

Si resulta que si es un ácido su nombre inicia con la palabra:

Ácido....

- b) Determinar el número de oxidación del elemento central considerando tres reglas:
- 1. En ácidos cada átomo de hidrógeno tiene número de oxidación 1+.
- 2. Cada átomo de oxígeno tiene número de oxidación 2-.

3. La suma de los números de oxidación de todos los átomos debe ser cero para un compuesto neutro.

Ejemplo 1. El número de oxidación de azufre en el oxiácido H_2SO_4 se calcula separando la fórmula en todos sus átomos (¡no solo en cationes y aniones!)

Y como se ha venido enfatizando, las fórmulas de los compuestos son neutras por lo que la suma de los números de oxidación debe ser cero:

El número de oxidación del hidrógeno (1+) se debe multiplicar por el número de átomos de este elemento para tomar en cuenta toda la carga aportada por el mismo. El número de oxidación de azufre queda como una incógnita y se puede obtener resolviendo la ecuación. De igual forma, el número de oxidación del oxígeno (2-) se debe multiplicar por el número de átomos de este elemento.

$$2*(1+) + (?) + 4*(2-) = 0$$

El número de oxidación que resulta para azufre es: 6+

$$2*(1+) + (6+) + 4*(2-) = 0$$

Y los números de oxidación para los elementos de H₂SO₄ son:

¡Recuerda que el número de oxidación se considera por cada átomo!

Finalmente, con base en el número de oxidación del azufre (6+) habrá que consultar las especificaciones de la tabla 1 para nombrar al ácido:

Tabla 1. Prefijos y terminaciones para nombrar aniones en ácidos de acuerdo con los números de oxidación del elemento central.

	Prefijos y terminaciones				
Elemento	Hipo	-oso	-ico	Per ico	-hídrico
central	oso				
Familia IV A		2+	4+		4-
Familia V A		3+	5+		3-
Familia VI A	2+	4+	6+		2-
FamiliaVII A	1+	3+	5+	7+	1-

Números de oxidación de metales de transición presentes en oxiácidos

Cromo, Cr		6+	
		Ácidos:	
		crómico, H ₂ CrO ₄	
		dicrómico, H ₂ Cr ₂ O ₇	
Manganeso,	4+	6+	7+
Mn	Ácido	Ácido mangánico	Ácido
	manganoso	H ₂ MnO ₄	permangánico
	H ₂ MnO ₃		HMnO ₄
Vanadio, V		5+	
		Ácido vanádico	
		H ₃ VO ₄	

De acuerdo con la información de la tabla 1, al número de oxidación del azufre (6+) en H_2SO_4 la terminación que le corresponde es -ico y el compuesto se llama:

Ácido sulfúrico

Ejemplo 2. Escribir el nombre para el compuesto con fórmula HClO₄

La fórmula representa un oxiácido porque inicia con el catión hidrógeno y tiene oxígeno. Luego, la fórmula se descompone totalmente para determinar el número de oxidación del elemento central.

Como se explicó en el ejemplo anterior, es necesario tomar en cuenta el número de átomos, de aquí resulta la siguiente ecuación:

$$(+1) + ? +4(-2) = 0$$

Y la solución es:

$$(+1) + (+7) + (-8) = 0$$

Y los números de oxidación para los elementos de HCIO₄ son:

El número de oxidación del cloro en HClO₄ es **7+**; así, de acuerdo con la tabla 3, el prefijo y terminación que corresponde al nombre de este oxiácido es: **per-** ...**-ico**, y el nombre de este compuesto resulta ser:

Ácido perclórico

Ejercicios.

1. Determina los números de oxidación para los elementos de las siguientes fórmulas:

Fórmula del	Números de oxidación		
oxiácido	Н	No metal	0
Ejemplo:	1 átomo de H	1 átomo de Br	3 átomos de O
HBrO₃	1(<mark>1+</mark>)	1(?)	3(<mark>2-</mark>)
	1+	5+	2-
H ₂ SO ₃			
HNO ₃			
H ₂ SO ₄			
H ₃ PO ₃			
HBrO ₄			

2. Vuelve a escribir el número de oxidación de los elementos centrales del ejercicio anterior y de acuerdo con la tabla 3 indica que prefijo y/o terminación le corresponde al nombrar al oxiácido:

Fórmula	No. de oxidación	Nombre del oxiácido
del	del elemento	
oxiácido	central	
Ejemplo:		
HBrO₃	5+	Ácido Brómico
H ₂ SO ₃		
HNO₃		
111103		
H ₂ SO ₄		
H ₃ PO ₃		
HBrO ₄		

. Separa la fórmula de H_3VO_4 en forma de suma e indica el número de oxidación de ada uno de los elementos.		
 4. El nombre que le corresponde a H₃VO. a) vanadato b) vanádico c) vanadoso d) pervanádico 5. Une con líneas de colores la fórmula delemento central: 	el ácido con el número de oxidación de su	
Fórmula del	No. de oxidación del	
oxiácido	elemento central	
H ₂ SeO ₄	1+	
H ₃ PO ₄	2+	
HMnO ₄	3+	
HBrO	4+	
H ₂ CO ₃	5+	
H ₂ SO ₂	6+	
HNO ₂	7+	

a) 3+, ácido fosforoso

b) 5+, ácido fosforoso

c) 3+, ácido fosfórico

d) 5+, ácido fosfórico

E. Autoevaluación.

Completa la siguiente tabla de acuerdo al título de las columnas:

Simbología	Nombre del	Oxiácido	No. de oxidación del	Nombre del
del	oxoanión	que forma	elemento central	Oxiácido
oxoanión				
NO ₂ 1-				
NO ₃ 1-				
SeO ₃ ²⁻				
SeO ₄ ²⁻				
SO ₃ ²⁻				
SO ₄ ²⁻				
CIO ¹⁻				
CIO ₂ 1-				
CIO ₃ 1-				
CIO ₄ 1-				
PO ₃ ³⁻				
PO ₄ ³⁻				

Capítulo 9.

Hidrácidos.

Introducción.

Los hidrácidos son compuestos solubles en agua y en disolución acuosa se ionizan y conducen la corriente eléctrica, generalmente se clasifican como ácidos fuertes lo que implica un alto grado de disociación y valores de pH bajos. Los hidrácidos son compuestos binarios que se forman por la combinación de hidrógeno y un elemento no metálico de las familias VI y VII de la tabla periódica (excepto oxígeno), ambos elementos pueden representarse en forma de iones.

$$H^{1+} + (NM)^{-}$$

Nomenclatura.

Estos compuestos se suelen nombrar tanto con la nomenclatura Tradicional (ejemplo. Ácido clorhídrico) como con la nomenclatura Stock (ejemplo. Cloruro de hidrógeno). En este cuadernillo se utilizará la nomenclatura Tradicional para nombrar a los hidrácidos, haciendo énfasis que esta forma de nombrarlos es cuando se encuentran en disolución acuosa.

Uno de los ácidos más utilizados es el ácido clorhídrico comercialmente conocido como ácido muriático, éste se utiliza en los hogares para la limpieza de sarro. Como dato curioso destacamos que este ácido tan corrosivo es parte de los jugos gástricos que se generan en nuestro estomago para la digestión.

A. Escribir la fórmula del hidrácido partir del nombre.

Para escribir la fórmula en estos compuestos el hidrógeno es la parte positiva con estado de oxidación (1+) y los no metales de las familias VI y VII son la parte negativa con estados de oxidación (2-) y (1-), respectivamente.

Números de oxidación de los no metales en hidrácidos

Familia VI	2-	Familia VII	1-
---------------	----	----------------	----

Introducción a la Nomenclatura de Compuestos Inorgánicos. Proyecto INFOCAB PB201516, CCH Azcapotzalco.

Ejemplo 1. Escribir la fórmula del ácido sulfhídrico

a) Para escribir la fórmula del compuesto se siguen los pasos revisados en el Capítulo 2, por lo que primero se escribe la parte positiva y luego la negativa: el catión hidrógeno (1+) y el azufre por es de la familia VIA tiene número de oxidación de (2-).

b) Como los compuestos son sustancias neutras, se requiere la misma cantidad de cargas positivas y de negativas, por lo tanto, utilizaremos dos iones hidrógeno y un ion azufre, la cantidad de cada ion se coloca como subíndice como se muestra a continuación:

c) Recuerda que el número uno no se escribe.

Ejemplo 2. Escribir la fórmula del ácido clorhídrico.

a) Colocamos el catión seguido del anión con sus respectivos estados de oxidación como cargas; en este caso, el cloro es de la familia VIIA y utiliza el número de oxidación (1-)

b) Dado que el compuesto es neutro se requiere utilizar un ion hidrógeno y un ion cloro, la cantidad de cada ion se coloca como subíndice, pero ¡recuerda que el número uno no se escribe!; por lo que, la fórmula se expresa así:

Ejercicios.

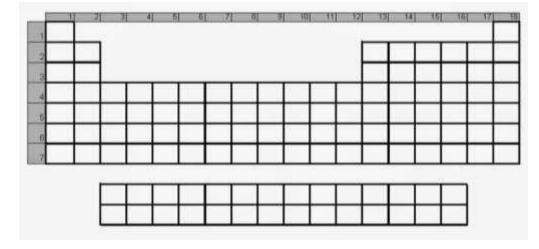
- 1. Escribe la fórmula general de los hidrácidos.
- 2. Señala con un círculo rojo el número de oxidación de los siguientes elementos necesario para formar un hidrácido.

S	2-,2+,4+,6+	CI	1+,1-,3+,5+,7+
Se	2-,4+,6+	Br	1-,1+,3+,5+,7+
Те	2+,2-,4+,6+	I	1+,1-,3+,5+,7+

3. Circula con rojo los hidrácidos:

CH ₄	HBr	H ₂ O
H ₂ S	H ₂ CO ₃	CaH ₂
LiH	HCI	HF

4. Completa la siguiente tabla escribiendo el ion o la fórmula faltante para formar el hidrácido correspondiente ¡fíjate en los iones que te proponen!


Catión	Anión	Fórmula
	CI ¹⁻	HCI
	Te ²⁻	
		HI
	Se ²⁻	
	Br ¹⁻	
H ¹⁺		H₂S

5. Coloca las cargas correspondientes sobre los símbolos de acuerdo con las fórmulas de la primera columna:

Ejemplo: HCl	H 1+ CI 1-
HBr	H Br
H₂Se	H Se
H ₂ S	H S
HI	H I

- 6. Escribe en letras mayúsculas nombre y símbolo del ion positivo que se utiliza en la escrituro de hidrácidos.
- 7. Escribe tres requisitos que debes usar para la formación de ácidos.

8. En el siguiente esquema de la tabla periódica ubica las familias y los elementos (símbolos) que forman hidrácidos.

B. Escribir el nombre de un hidrácido a partir de su fórmula.

Ejemplo 1. Escribe el nombre de la fórmula HF

a) A diferencia de otros compuestos inorgánicos, para asignar el nombre de un ÁCIDO (tanto oxiácidos como hidrácidos), se nombra con la palabra ÁCIDO seguida de la raíz del no metal con la terminación HÍDRICO.

De esta manera siempre que se encuentre una fórmula de un hidrácido simplemente se aplica lo expuesto en el inciso anterior:

HF Ácido fluorhídrico

Ejemplo 2. Escribir el nombre de la fórmula: HBr

a) Se nombran con la palabra ÁCIDO seguida de la raíz del no metal al que se le agrega la terminación HÍDRICO

H Br Ácido bromhídrico

Ejercicios.

1. Escribe el nombre a las siguientes fórmulas según corresponda.

Fórmula	Nomenclatura tradicional
Ejemplo: HF	Ácido fluorhídrico
HBr	
HI	
H ₂ Se	
H ₂ Te	

2. Construye la fórmula y proporciona el nombre:

Catión	Anión	Fórmula	Nombre
	Cl ¹⁻	HCI	Ácido clorhídrico
	Br ¹⁻		
H ¹⁺	I 1-		
	S ²⁻		
	Se ²⁻		
	Te ²⁻		

3. Sólo existen siete hidrácidos, enlista los elementos con los que se forman utilizando la tabla periódica (anexo 1) e indica su número de oxidación con el que se combinan con el catión H¹+.

Símbolo del elemento	Nombre	Número de oxidación	Símbolo del elemento	Nombre	Número de oxidación
1.			5.		
2.			6.		
3.			7.		
4.					

4. Menciona el nombre de los siguientes compuestos:

Fórmula	Nombre
H ₂ Se	
HI	
H ₂ S	
H ₂ Te	

5. Subraya con rojo todos los compuestos que son hidrácidos:

Ácido clorhídrico	Ácido bromoso
Ácido perclórico	Ácido peryódico
Ácido yodhídrico	Ácido sulfhídrico
Ácido cianhídrico	Ácido nítrico
Ácido hipocloroso	Ácido fosforoso

6. Escribe los iones, las fórmulas y nombres correctos para los siguientes compuestos:

catión	anión	Nombre	Fórmula
	Cl ¹⁻	Ácido clorhídrico	HCI
	Te ²⁻		
			H
	Se ²⁻		
	Br ¹⁻		
H ¹⁺			H₂S

7. Escribe la fórmula y nombre de cinco hidrácidos que hayas memorizado.

C. Autoevaluación.

Subraya la respuesta correcta.

1.		ácido binari M= No meta		cido tiene la tal):	siguie	nte fór	mula gen	neral:		
	a)	HNMO		b) MNMO		c) H	NM		d) NMC)
2.			lBr el est	ado de oxida	ación p			s:	N 0	
	a)	1+		b) 1-		c) 2-	•		d) 2+	
3.	-	uál de las si HClO	guientes	fórmulas rep b) HClO ₃	oresent	a a ur c) H(d) HCIO	5
4.	Se	nombra u	n hidrác	ido antepon	iendo	la pa	labra		_y con	terminación
	a)	ácido/-uro		b) ácido /-hí	drico	c)-u	ro/metal		d)-uro /-	hídrico
5.	a) <i>i</i>	uál es el nor Ácido Telur Hidruro de T	oso	H₂Te?	٠.		de Hidro elurhídrico	_	II	
6.				ın principalm	-		-		e:	
	•	Metal + No Hidrógeno -		al	•		ıl + Hidróç Hidrógene	_		
				rácidos se a periódica:	realiza	pr	rincipalme	ente d	con los	grupos o
	a)	VI y VII	b) I y l	II	c) IV	y VI		d) II y	VI	
				drácidos deb	emos f	•				
,		oresencia d ición del hid	•	o en la fórmula	l	•	a presenc osición de			crado
9.	9. Para formar el H ₂ S se requiere que el hidrógeno y el azufre tengan los siguientes números de oxidación, respectivamente:									
	a)	1+, 2+	b) 1-,2	2-	c) 2+	,1-		d) 1+,	2-	

Capítulo 10.

Sales.

Introducción.

Las sales son compuestos inorgánicos, se clasifican en binarias, terciarias y cuaternarias, o bien, en binarias y oxisales (ver capítulo 3), la mayoría son solubles en agua, presentan estructuras cristalinas y tienen altos puntos de fusión. Las sales son el resultado de la unión de una especie catiónica cualquiera con una especie aniónica **distinta de** H¹-, O²- y (OH)¹-.

Por ejemplo; los cationes Na^{1+} , K^{1+} y los aniones Cl^{1-} , S^{2-} dan lugar a sales como: cloruro de sodio (NaCl) y sulfuro de potasio (K_2S).

Las sales se forman a partir de la reacción de metales con no metales, también son producidas por neutralización de ácidos y bases, o bien, a partir de las reacciones directas de ácidos sobre algunos metales.

Nomenclatura.

En este cuadernillo la nomenclatura que se utiliza para nombrar a las sales es la **Nomenclatura Stock** (ver capítulo dos). Los suelos están formados por diversos compuestos entre ellos se encuentran las sales (comúnmente conocidas como minerales), algunos ejemplos son: el sulfuro de zinc o blenda (ZnS), el carbonato de calcio o caliche (CaCO₃), el fluoruro de calcio o fluorespato (CaF₂), entre muchas otras.

A. Escribir la fórmula de una sal a partir de su nombre.

Para escribir la fórmula de las sales, se deben considerar que la parte positiva o catión siempre la constituye el metal u otra especie positiva, por lo que se escribe al inicio de la fórmula; enseguida se escribe la parte negativa o anión (oxoanión, si el anión tiene oxígeno). Como se ha señalado anteriormente, las fórmulas de los compuestos deben ser neutras, así, resulta sencillo escribir la fórmula de cualquier

sal a partir de la identificación de sus iones.

Ejemplo 1. Escribir la fórmula del cloruro de sodio.

a) Escribir primero la parte positiva que corresponde al metal con su número de oxidación expresado como carga, en este caso es el catión Na¹⁺, seguido de la parte negativa que es el anión cloruro Cl¹⁻ (consultar tabla de aniones, anexo 2):

b) El siguiente paso es igualar las cargas positivas y negativas, en este caso, la cantidad de cargas son iguales, por lo que, solamente se requiere de un ion sodio y un ion cloruro, colocando esta cantidad como subíndices en cada uno de los símbolos (recuerda que el número uno no se escribe), finalmente la fórmula correcta es:

Na CI

Ejemplo 2. Escribir la fórmula del carbonato de mercurio (I)

a) Para este compuesto se utiliza el catión metálico Hg¹⁺ seguido de la parte negativa que es el anión carbonato (CO₃)²⁻ (consultar tabla de aniones, anexo 2):

$$Hg^{1+}(CO_3)^{2-}$$

b) En este caso, la cantidad de cargas es diferente, por lo que, se requiere de **dos** iones mercurio, y **un** anión carbonato, como se muestra a continuación:

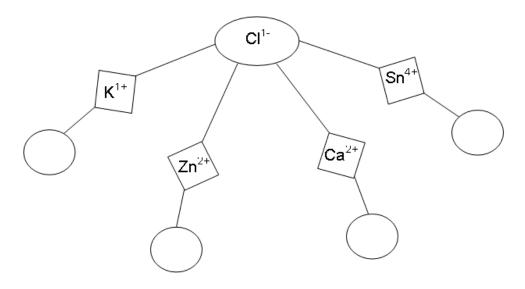
c) Finalmente, la cantidad de cada uno de los iones se colocan como subíndices, obteniendo la siguiente fórmula:

Ejercicios.

1. Siguiendo el ejemplo, une el catión con el respectivo anión, y anota las fórmulas correspondientes:

Cationes	Aniones	Fórmulas
Ejemplo: Fe ²⁺	CI ¹⁻	FeCl ₂
Na ¹⁺	F ¹⁻	
Ba ²⁺	S ²⁻	
K ¹⁺	Cl ¹⁻	
Ni ²⁺	Br ¹⁻	

Cationes	Aniones	Fórmulas
Fe ³⁺	(CO ₃) ²⁻	
Co ²⁺	(PO ₄) ³⁻	
Ca ²⁺	(BrO ₂) ¹⁻	
Cu ¹⁺	(SO ₄) ²⁻	
Fe ³⁺	(BrO) ¹⁻	


2. Indica el catión y anión correspondiente para cada uno de los siguientes compuestos:

Fórmula	Catión	Anión
Ejemplo Sn(HCO ₃) ₂	Sn ²⁺	HCO ₃ 1-
NaMnO ₄		
Na ₃ BO ₃		
Be(BrO ₃) ₂		

Fórmula	Catión	Anión
SbPO ₄		
Li ₂ HCO ₃		
Mg ₃ (PO ₃) ₂		
AIPO ₃		

3. Revisa cuidadosamente las fórmulas siguientes y coloca en los círculos vacíos las fórmulas correctas de las sales que se forman con el ion cloruro (Cl¹-):

 K_2CI , SnCI, Zn_3CI , $CaCl_2$, $SnCl_2$, KCI, $ZnCl_2$, $SnCl_4$, Ca_2CI

4. Observa las fórmulas y explica siguiendo el ejemplo:

CuCl	Ejemplo: El Cu es un catión con número de oxidación 1+ y el cloro es un anión con número de oxidación 1-
NaCl	
CuCl ₂	
ZnCl ₂	
PbCl ₄	
CoCl ₃	

5. Observa los siguientes elementos con sus números de oxidación e indica las fórmulas de las sales que se formarían con el anión $(CrO_4)^{2-}$.

	,
Catión	Fórmula:
Ejemplo	
Li ¹⁺	Li ₂ CrO ₄
(NH ₄) ¹⁺	
Fe ²⁺	
Pb ²⁺	
As ³⁺	
Co ²⁺	

Catión	Fórmula:
K ¹⁺	
Na ¹⁺	
Fe ³⁺	
Pb ⁴⁺	
As ⁵⁺	
Co ³⁺	

6. Escribe las fórmulas de los siguientes compuestos:

cloruro de hierro (III)	carbonato de potasio	nitrato de níquel (II)
sulfato de zinc	fluoruro de berilio	nitrito de níquel (III)
sulfito de aluminio	bromato de sodio	hipoclorito de níquel (III)

B. Escribir el nombre de una sal a partir de su fórmula utilizando la tabla de aniones y cationes.

Para escribir el nombre de las sales utilizando la nomenclatura Stock se cita primero la parte negativa y después la parte positiva, es decir, escribir el nombre del anión seguido del nombre del catión con su carga en número romano entre paréntesis (recuerda que esto último se aplica cuando el metal tiene dos o más estados de oxidación).

En esta sección para asignar el nombre las fórmulas de las sales, primero se van a clasificar en sales binarias y oxisales (ver capítulo 3) y luego se aplican los siguientes criterios:

1) Todas las sales binarias se nombran utilizando la raíz del nombre del no metal con la terminación -uro que es el anión, la preposición "de" seguido del nombre del catión metálico, indicando si es necesario, su número de oxidación con número romano entre paréntesis; por ejemplo:

NaCl: Cloruro de sodio Snl₄: Yoduro de estaño (IV)

Li₂S: Sulfuro de litio

2) Para nombrar a las oxisales es necesario primero separar las fórmulas e identificar los iones que la forman, y posteriormente consultar la tabla de aniones de anexo 2 para nombrarlos adecuadamente; de igual manera, se consulta el anexo 3 para identificar al catión metálico y su número de oxidación.

Ejemplo 1. Escribir el nombre para Cu(NO₃)₂.

a) A partir de la fórmula se observa que el compuesto está formado por un catión cobre y por dos aniones (oxoaniones); enseguida se busca el anión en la tabla de iones del anexo 2 donde se muestran su nombre, su carga y su simbología, los iones que forman al compuesto se escriben separados:

- **b)** En el anexo 3, identificar al catión y su carga (¡recuerda! si es un metal se debe verificar a qué número de oxidación corresponde y si es necesario indicarlo en el nombre), en este caso el cobre tiene dos números de oxidación: **1+** y **2+**.
- c) Nombrar al compuesto iniciando por el anión nitrato (NO₃)¹- seguido del nombre del catión, y entre paréntesis escribir su estado de oxidación en número romano; tomando en cuenta lo anterior el nombre del compuesto es:

nitrato de cobre (II)

Ejemplo 2. Escribir el nombre para Al₂(CO₃)₃.

a) A partir de la fórmula se observa que el compuesto está formado por dos cationes de aluminio y por tres aniones (oxoaniones); ahora hay que buscar nombre, carga y simbología correcta de los iones para representarlos separados:

$$\begin{array}{c}
A|^{3+} & (CO_3)^{2-} \\
A|^{3+} & (CO_3)^{2-} \\
& (CO_3)^{2-}
\end{array}$$

$$Al_2(CO_3)_3$$

b) Identificar el número de oxidación del metal y si es necesario indicarlo en el nombre, en este caso el aluminio tiene un solo número de oxidación: **3+**, y no se expresa en el nombre del compuesto:

Carbonato de aluminio

Aunque generalmente los metales constituyen la parte positiva de las sales, también existen cationes como: amonio (NH₄)¹⁺ y fosfonio (PH₄)¹⁺, que forman sales muy importantes.

Ejercicios.

1. Busca los siguientes aniones en la tabla del anexo 2 y escribe su nombre:

Anión	Nombre del anión
Cl ¹⁻	
Br ¹⁻	
(NO ₂) ¹⁻	
(NO ₃) ¹⁻	
(SO ₃) ²⁻	
(SO ₄) ²⁻	

Anión	Nombre del anión
F ¹⁻	
S ²⁻	
(IO ₂) ¹⁻	
(CO ₃) ²⁻	
(PO ₃) ³⁻	
(PO ₄) ³⁻	

2. Identifica los iones presentes en las fórmulas y escribe el nombre de los compuestos:

Fórmula	Catión	Anión	Nombre del compuesto
Li ₂ CO ₃			
SrCl ₂			
Na ₂ CO ₃			
MgBr ₂			
Ni ₂ (CO ₃) ₃			
Ca ₃ (PO ₃) ₂			
FeS			
HgSO ₃			

	_	entes sales binarias (indica en numero romano ent ón en caso de ser necesario).
a) L	iF	e) AgCl
b) C	caS	f) Fel ₂
c) A	IBr ₃	g) Co ₂ S ₃
d) Z	nBr ₂	h) HgS
4. A	plica la Nomenclatura Stock	para indicar el nombre de las siguientes fórmulas:
	Fórmula	Nombre
	Sn(CO ₃) ₂	
	KMnO ₄	
	Na ₃ BO ₃	
	PbBr ₄	
	Be ₃ (BO ₃) ₂	
	FePO ₄	
	Li ₃ PO ₃	
	BeSO ₄	
	AgNO₃	
	SrCl ₂	

Pd(SO₃)₂

C. Escribir y nombrar la fórmula de una sal a partir del número de oxidación del elemento central.

En las oxisales, de manera general, se debe considerar el estado de oxidación del átomo central, y con ayuda de las siguientes tablas, se designa el prefijo y la terminación correspondientes para nombrar al compuesto mediante la nomenclatura tradicional.

Tabla 1. Prefijos y terminaciones para nombrar aniones de acuerdo a números de oxidación.

Números de oxidación		Prefijo	Terminación
Dos	Menor (3+)		-ito
	Mayor (5+)		-ato
	Elementos con dive	ersos números de	oxidación.
	1+ o 2+	Hipo-	-ito
	3+ 0 4+		-ito
	5+ 0 6+		-ato
	7+	Per-	-ato

Ejemplo 1. Escribir el nombre de Mn(SO₃)_{2.}

a) Determinar el número de oxidación del azufre en el anión sulfito, (SO₃)²- (consultar capítulo 1); así, el número de oxidación de este elemento es 4+, y considerando la información de la Tabla 1 la terminación que le corresponde es -ito:

sulfito de manganeso ...

b) Para identificar el estado de oxidación del metal desglosamos la fórmula e igualamos las cargas:

$$Mn^{4+} (SO_3)^{2-}$$

 $(SO_3)^{2-}$

$Mn(SO_3)_2$

c) Dado que la suma de las cargas positivas y negativas debe dar cero, se deduce que la carga de Mn es 4+, en este caso, el manganeso tiene varios números de oxidación (ver anexo 3) por lo que, en este caso, el número de oxidación se debe escribir en número romano y entre paréntesis al final del nombre:

sulfito de manganeso (IV)

Ejemplo 2. Nombrar la fórmula del NaClO₂.

a) Determinar el número de oxidación del cloro en el ion $(ClO_2)^{1-}$. Recuerda que la suma de los números de oxidación de todos los átomos debe ser cero para un compuesto o igual a la carga para un ion, en este caso se trata de un ion:

$$(CIO_2)^{1-}$$
 1*(3+) + 2*(2-) = 1-

Donde los números de oxidación se resaltan en color rojo, la cantidad de átomos en negrita y en verde la carga total del ion; así el número de oxidación de **cloro** en (ClO₂)¹⁻ resulta ser 3+.

De acuerdos a la tabla 1 el nombre del anión es la raíz del elemento central más la terminación —ito, preposición "de" seguido por el nombre del catión:

Clorito de sodio

b) Para conocer el estado de oxidación del metal, desglosamos la fórmula, e igualamos las cargas:

NaCIO₂

c) La carga de Na es 1+ y sólo tiene un número de oxidación; así que el nombre de esta fórmula queda como se escribió anteriormente:

Clorito de sodio

Ejercicios.

1. Clasifica las siguientes fórmulas en sales binarias u oxisales:

Fórmula	Sal binaria / Oxisal
Na ₂ SO ₃	
BaF ₂	
AgBr	
CaSO ₄	
K ₂ SO ₄	
BaBr ₂	

Fórmula	Sal binaria / Oxisal
AI (CIO) ₃	
KBrO₃	
Be (IO) ₂	
PbI ₂	
Zn ₃ (PO ₃) ₂	
Li₂Se	

2. Observa y explique la composición de las fórmulas siguiendo el ejemplo:

CuCl	Ejemplo: El Cu es un catión con número de oxidación 1+ y el cloro es un anión con número de oxidación 1-, y su nombre es cloruro de cobre (I)
NaNO ₂	
Cu ₃ (PO ₃) ₂	
Ni(NO ₃) ₃	
AICI ₃	
Ag ₂ SO ₄	
Fe ₃ (PO ₄) ₂	

3. Siguiendo el ejemplo, une el catión con el respectivo anión, anota las fórmulas e indica los nombres (se sugiere usar los colores indicados):

Cationes	Aniones	Fórmulas
Ejemplo: Fe²+	CI ¹⁻	FeCl ₂ cloruro de hierro (II)
Na ¹⁺	(BrO ₂) ¹⁻	
Ba ²⁺	(AsO ₃) ³⁻	
K ¹⁺	S ²⁻	
Ni ²⁺	F ¹⁻	
Fe ³⁺	Cl ¹⁻	
Co ²⁺	Br ¹⁻	
Ca ²⁺	J 1-	
Cu ¹⁺	(CN) ¹⁻	
Fe ³⁺	(SO ₃) ²⁻	
Co ³⁺	(SO ₄) ²⁻	

4. Observa los siguientes elementos con sus números de oxidación e indica los nombres y las fórmulas de las sales que se forman con el anión CrO₄²·.

Ejemplo Fe ²⁺	Fórmula: FeCrO4.oxisal cromato de hierro (II)
Na ¹⁺	
Ni ^{1-,2+, 3+}	
Co 1-, 2+, 3+	
(NH ₄) ¹⁺	

5. Construye y escribe el nombre de los compuestos que se forman con los elementos metálicos de la familia X B de la tabla periódica y el anión CN1-:

Familia X B:

Ejemplo: Ni 1-, 2+, 3+

Ni(CN)₂ cianuro de níquel (II) Ni(CN)₃ cianuro de níquel (III)

6. Escribe las fórmulas de los siguientes compuestos:

Cloruro de hierro (III)	Carbonato de potasio	Nitrato de níquel (II)
Sulfato de zinc	Fluoruro de berilio	Bromato de talio (III)

D. Autoevaluación

1. Siguiendo el ejemplo marcado en negritas, une con una línea el catión con el respectivo anión y anota las fórmulas correspondientes (se sugiere usar colores diferentes):

Nombres	Cationes	Aniones	Fórmulas
a) Cloruro de hierro (II)	Mg²+	NO ₃ ^{1 -}	a) FeCl ₂
b) Sulfato de cobalto (II)	Ba ²⁺	F ¹⁻	
c) Bromuro de cobre (I)	Ca ²⁺	SO ₄ ²⁻	
d) Nitrato de bario	K ¹⁺	Cl ¹⁻	
e) Fosfato de calcio	Cu ¹⁺	Br ¹⁻	
f) Carbonato de potasio	Fe ²⁺	CO ₃ ²⁻	
g) Fluoruro de magnesio	Co ²⁺	PO ₄ ³⁻	

2. Escribe dentro del paréntesis la letra que corresponde a la fórmula correcta del compuesto:

- a) CsF () fluoruro de cesio
- b) BeS_2O_3 () bromito de cobre (I)
- c) Sn(HSO₃)₂ () hipoclorito de sodio
- d) KNO₂ () nitrito de potasio
- e) CuBrO₂ () bisulfito de estaño (II)
- f) NaClO () tiosulfato de berilio

3. Completa la siguiente tabla:

Elemento	Número de oxidación	Anión	Fórmula
níquel	3+	F ¹⁻	
cobre	2+	 1-	
zinc	2+	CN ¹⁻	
plomo	4+	S ²⁻	
plata	1+	Cl ¹⁻	

4. Representa simbólicamente lo que se te solicita en la tabla siguiente:

Nombre del ion o del compuesto	Representación simbólica
Silicato	
arseniato	
Tetraborato de cobalto (II)	
Sulfito	
Nitrito de arsénico (IV)	

Nombre del ion o del compuesto	Representación simbólica
Carbonato	
Nitrato	
Yoduro de	
magnesio	
Fosfato	
Sulfuro de sodio	

5. Localiza y encierra con un círculo la fórmula correcta de las siguientes sales:

Nombre		Fórn	nula	
Bromito de sodio	H₃Na	Na ₃ BrO ₂	NaBrO ₂	NaHBrO ₂
Arsenito de hierro (III)	FeAsO ₃	Fe ₄ AsO ₃	FeH ₂ AsO ₃	H₂AsO₃
Sulfuro de potasio	KS	KHSO ₂	KS ₂	KH ₂
Cianuro de amonio	NHCN	NH4CN	NH ₂ CN	NH ₄ H
Silicato de plomo (II)	PbHSiO₃	Pb ₂ SiO ₃	PbHO ₃	PbSiO₃

6. Completa la tabla escribiendo la fórmula o el nombre según corresponda.

Fórmula	Nombre
K ₂ SO ₄	
	Nitrato de amonio
	Carbonato de magnesio
Fe(ClO ₄) ₃	

7. Completa la siguiente tabla con las fórmulas y nombres correctos que se forman en la intersección de los iones:

	Aniones									
Cationes	CN ¹⁻	C ₂ O ₄ ²⁻	CIO ₂ 1-	BrO ₄ ¹⁻	F1-					
	NH ₄ CN									
NH ₄ ¹⁺	Cianuro de amonio									
Fe ²⁺										
Na ¹⁺										
Cr ³⁺										
Co ³⁺										
Cu ²⁺										

8. Completa la siguiente tabla, identificando los iones y asignándole el nombre correcto al compuesto (¡No olvides indicar, si es necesario, los números de oxidación!).

27.1.0.0.0.10.1.1.7.			
Fórmula	Catión	Anión	Nombre
(NH ₄) ₃ AlO ₃			
FePO ₄			
NiHPO ₄			
Pb(ClO ₃) ₂			
NaClO ₄			

9. Escribe correctamente el nombre de los siguientes compuestos o iones.

Fórmula	Nombre del ion o compuesto
(CO ₃) ²⁻	
NH ₄ IO ₃	
NaBrO ₃	
(CN) ¹⁻	
(Cr ₂ O ₇) ²⁻	
Co ₂ (S ₂ O ₃) ₃	
S ₂ O ₃ ²⁻	
	monolatura de Compuestos Inergénicos

Anexo 1. Tabla periódica de los elementos químicos

Grupo → ↓Periodo		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
		Lantá	nidos	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		Actír	nidos	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Tomada de https://es.m.wikipedia.org/wiki/Archivo:Tabla_elementos.svg, bajo la licencia <a href="https://es.m.wikipedia.org/wiki/Archivo:Tabla_eleme

Anexo 2 Tabla de iones

Cobre (II), cúprico Niquel (II), niqueloso Estaño (II), estanoso

Cationes Carga +

Representación simbólica	Nombre
H ⁺ Na ⁺ Li ⁺ K ⁺ Cs ⁺ Ag ⁺ Cu ⁺ Hg ⁺ H ⁺ Na ⁺ NH ₄ +	Hidrógeno Sodio Litio Potasio Cesio Plata Cobre(I),cuproso Mercurio (I), mercuroso Hidrógeno Sodio Fosfonio Amonio
Cationes Carga 2+	
Ca ²⁺ Ba ²⁺ Mg ²⁺ Pb ²⁺ Hg ²⁺ Fe ²⁺ Cu ²⁺ Ni ²⁺	Calcio Bario Magnesio Plomo (II), plumboso Mercurio (II), mercúrico Fierro (II), ferroso Cobre (II), cúprico Niquel (II), niqueloso
Sn ²⁺ Co ²⁺ Sr ²⁺ Zn ²⁺ Cd ²⁺ Mn ²⁺ Mg ²⁺ Hg ²⁺ Hg ²⁺ Fe ²⁺	Estaño (II), estanoso Cobalto (II), cobaltoso Estroncio Zinc Cadmio Manganeso (II) Magnesio Plomo (II), plumboso Mercurio (II), mercúrico Fierro (II), ferroso

Cu²⁺ Ni^{2+} Sn²⁺

Cationes Carga 3+

Al³⁺ Aluminio

Fe³⁺ Fierro (III), férrico
Bi³⁺ Bismuto (III)
Co³⁺ Cobalto (III)
Al³⁺ Aluminio

As³⁺ Arsénico (III), arsenoso

Sb³⁺ Antimonio (III)
Mn³⁺ Manganeso (III)
Cr³⁺ Cromo (III)

Cationes Carga 4+

Sn⁴⁺ Estaño (IV) Pb⁴⁺ Plomo (IV)

Cationes Carga 5+

As⁵⁺ Arsénico (V), arsénico

Sb⁵⁺ Antimonio (V)

Mn⁷⁺ Manganeso (VII), permangánico

Aniones Carga -

Representación simbólica Nombre

H-Hidruro Br⁻ Bromuro CI-Cloruro F-Fluoruro OH-Hidróxido CN-Cianuro BrO₃ -**Bromato** BrO₂ **Bromito** NO_2 **Nitrito** NO₃ **Nitrato** CIO-Hipoclorito CIO₂ Clorito CIO₃ Clorato

CIO₄ Perclorato BrO⁻ Hipobromito BrO₂ **Bromito Bromato** BrO₃ BrO₄ Perbromato 10_2 Yodito 10_4 Peryodato KMnO₄ Permanganato SCN-Tiocianato HCO₃ Bicarbonato HSO₄ **Bisulfato** HSO₃ Bisulfito H₂PO₄ -Fosfato diácido

BrO₃ - Bromato

BrO₂ - Bromito

NO₂ - Nitrito

NO₃ - Nitrato

ClO - Hipoclorito

ClO₂ - Clorito

HPO₄ Fosfato monoácido

CH₃COO⁻ Acetato

Aniones carga 2-

CO₃ ²⁻ Carbonato CrO₄ 2-Cromato Cr₂ O₇ ²⁻ Dicromato SO₃ ²⁻ Sulfito SO₄ ²⁻ Sulfato S₂O₃ ²⁻ **Tiosulfato** SeO₃ 2-Selenito SeO₄ 2-Selenato SiO₃ ²⁻ Silicato

HPO₃ ²- Fosfito Monoácido

Aniones Carga 3-

Anexo 3. Tabla periódica con estados de oxidación de los elementos químicos

	NÚMEROS DE OXIDACIÓN DE LOS ELEMENTOS DE LA TABLA PERIÓDICA																
IĀ	ı																VIIIA
н																	He
+1	IIA											IIIA	IVA	VA	VIA	VIIA	
Li	Ве											В	C	N	0	F	Ne
+1	+2						±3	+2, ±4	±1, ±2, ±3 +4,+5	-1,-2	-1						
Na	Mg											AI	Si	Р	s	CI	Ar
+1	+2										,	+3	+2, ±4	±3,+5	±2,+4,+6	±1 +3,+5,+7	
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
+1	+2	+3	+2,+3,+4	+2,+3 +4,+5	+2,+3 +6	+2,+3 +4,+6,+7	+2,+3	+2,+3	+2,+3	+1,+2	+2	+1,+3	+2,+4	±3,+5	-2,+4,+6	±1 +3,+5,+7	
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru +2,+3	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ı	Хe
+1	+2	+3	+3,+4	+2,+3 +4,+5	+2,+3 +4,+5,+6	+4,+5 +6,+7	+4,+5,+6 +7,+8	+2,+3 +4,+5,+6	+2,+4	+1	+2	+1,+3	+2,+4	±3,+5	±2,+4,+6	±1 +3,+5,+7	
Cs	Ва	La	Hf	Та	w	Re	Os +2,+3	lr	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn
+1	+2	+3	+3,+4	+3,+4,+5	+2,+3 +4,+5,+6	+2,+3 (+4,+6,+7)	+4,+5,+6 +7,+8	+2,+3 +4,+5,+6	+2,+4	+1,+3	+1,+2	+1,+3	+2,+4	+3,+5	±2,+4,+6	±1,+5	
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
+1	+2	+3	+3,+4														

Tomado de https://quimica.uag.mx/docs/TP_valencias.pdf

Bibliografía.

Castillejos, E. L., (1989). Química. Aprendiendo a base de ejercicios. México: La autora.

Connelly, N.G., Damhus, T., Hartshorn R., Hutton A., (2005). Libro rojo. *Nomenclatura de Química Inorgánica. Recomendaciones 2005.* IUPAC. Recuperado el 22 Febrero de 2016 de http://recursostic.educacion.es/secundaria/edad/3esofisicaquimica/3quincena8/libro_rojo_2005_esp.pdf.

Dingrando, L., Gregg K. V., Hainen N., Wistrom C., (2010). *Química Materia y cambio*. México: Mc Graw Hill.

Garritz, A., Chamizo J. A. (1994). *Química*. USA: Addison-Wesley Iberoamericana S. A.

Gasque, L., (2006). *El hidrógeno, energético del futuro*. Recuperado el 18 de febrero de 2016, de http://www.comoves.unam.mx/numeros/articulo/93/el-hidrogeno-energetico-del-futuro.

Guerrero G., M., (1994). Balanceo de Ecuaciones Químicas. México: UNAM.

Gutiérrez R., E. A. (2013). La química en tus manos. México: UNAM.

Kolb D., (1999). *Química para el nuevo milenio*. (8a ed.). Cuidad de México, México: Prentice Hall.

Leigh G., J., Favre H., A., Blackwell M., (2005). *Principles of Chemical Nomenclature. A guide to IUPAC Recommendations* Scientific Publication Oxford. Recuperado el 28 de febrero de 2016, de http://www.iupac.org/fileadmin/user-upload/databases/Red-Book 2005.pdf

López, L., (2012). *Química Inorgánica. Aprende Haciendo*.(3a ed.). México: Pearson Educación.

Phillips, J. (2007). Química conceptos y aplicaciones (2ª ed.). México: McGraw Hill.

Pinto, G., (2006). Química al alcance de todos. España: Pearson Education.

Rodrígez, P., (2007). *Nomenclatura de Química Inorgánica*. Recuperado el 1 de febrero de 2016, de http://depa.fquim.unam.mx/vmus/QGI/Lab/nomenclatura1.pdf.

Romero, M. A., (s.f.). Aspectos elementales en la nomenclatura de sustancias inorgánicas. Recuperado el 1 de febrero de 2016, de http://asesorias.cuautitlan2.unam.mx/inorganica/profes/asp/apuntes/nomquim.pdf,

Solís C. H. E., (2014). Nomenclatura Química. (1ª ed). Cuidad de México: E-Book.

Timberlake K. C., (2010). Química. Una introducción a la química general, orgánica y biológica. (10ª ed.). España: Pearson.

Tro, N., (2011). *Química, una visión molecular del mundo*. (4ª ed.). Cuidad de México, México: Cengage.

Universidad Autónoma de Querétaro (s/f). *Números de oxidación de los elementos de la tabla periódica*. https://quimica.uag.mx/docs/TP_valencias.pdf

Whitten, W. K., et al. (2011). *Química*. (8ª ed.). México: Cengage Learning Editores, S.A. de C.V.

Wikipedia (2010). *Tabla periódica completa*. https://en.wikipedia.org/wiki/File:Tabla_periodica_completa.svg

Zumdahl, S., (2012). Fundamentos de Química (5ª ed.). México: Mc Graw Hill Interamericana.

Zumdahl & Decoste.(2011). Principios de Química. (7ª ed.). E.U.A: Cengage Learning.

Cibergrafía.

http://ejercicios-

fyq.com/Formulacion_Inorganica/12_normas_para_escribir_nombres.html

http://www.ecured.cu

https://danielftorresxd.wordpress.com/2012/10/22/nomenclatura-quimica/ (consultado el 20 de febrero de 2016 a las 20:49)

http://www.acienciasgalilei.com/qui/pdf-qui/formu.pdf Consultado el 16 de Septiembre 2016

https://www.youtube.com/watch?v=QD-18YqEPVM. Consultado el 23 de febrero 2016

https://www.youtube.com/watch?v=W0PCcfH7fUM. Consultado el 23 de febrero 2016 https://www.educaplay.com/es/recursoseducativos/tag/anhidridos. Consultado el 26 de noviembre 2016

http://www.acienciasgalilei.com/qui/pdf-qui/formu.pdf. Consultado el día 17 Septiembre 2016.

